
Simulink® Design Verifier™

User's Guide

R2017a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier™ User's Guide
© COPYRIGHT 2007–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

Prover, Prover Technology, Prover Plug-In and the Prover logo are trademarks or registered
trademarks of Prover Technology AB in Sweden, the United States and in other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History

May 2007 Online only New for Version 1.0 (Release 2007a+)
September 2007 Online only Revised for Version 1.1 (Release 2007b)
March 2008 Online only Revised for Version 1.2 (Release 2008a)
October 2008 Online only Revised for Version 1.3 (Release 2008b)
March 2009 Online only Revised for Version 1.4 (Release 2009a)
September 2009 Online only Revised for Version 1.5 (Release 2009b)
March 2010 Online only Revised for Version 1.6 (Release 2010a)
September 2010 Online only Revised for Version 1.7 (Release 2010b)
April 2011 Online only Revised for Version 2.0 (Release 2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
October 2015 Online only Rereleased for Version 2.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)





Contents

Acknowledgments
 

Getting Started
1

Simulink Design Verifier Product Description . . . . . . . . . . . 1-2
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Simulink Design Verifier Block Library . . . . . . . . . . . . . . . . . 1-3

Analyze a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
About This Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Open the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Generate Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Combine Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24

Generate Test Cases for a Subsystem . . . . . . . . . . . . . . . . . . 1-26

Analyze a Stateflow Atomic Subchart . . . . . . . . . . . . . . . . . . 1-28
Analyze an Atomic Subchart Using the Simulink Design

Verifier Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28

Basic Workflow for Simulink Design Verifier . . . . . . . . . . . 1-31

How the Simulink Design Verifier Software Works
2

Analyze a Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

v



Model Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Block Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Inlined Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Large Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Handle Incompatibilities with Automatic Stubbing . . . . . . . 2-8
What Is Automatic Stubbing? . . . . . . . . . . . . . . . . . . . . . . . . 2-8
How Automatic Stubbing Works . . . . . . . . . . . . . . . . . . . . . . 2-8
Analyze a Model Using Automatic Stubbing . . . . . . . . . . . . 2-10

Nonfinite Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15

Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Approximations During Model Analysis . . . . . . . . . . . . . . . 2-16
Types of Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Floating-Point to Rational Number Conversion . . . . . . . . . . 2-17
Linearization of Two-Dimensional Lookup Tables for Floating-

Point Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
Approximation of One- and Two-Dimensional Lookup Tables for

Integer and Fixed-Point Data Types . . . . . . . . . . . . . . . . 2-18
While Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18

Logic Operations Short-Circuiting . . . . . . . . . . . . . . . . . . . . 2-20

Checking Compatibility with the Simulink Design
Verifier Software

3
Check Model Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Compatibility with Simulink Design Verifier . . . . . . . . . . . . . 3-2
Run Compatibility Check . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Compatibility Check Results . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Supported and Unsupported Simulink Blocks in Simulink
Design Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

Support Limitations for Simulink Software Features . . . . . 3-22

vi Contents



Support Limitations for Model Blocks . . . . . . . . . . . . . . . . . 3-25

Support Limitations for Stateflow Software Features . . . . 3-27
ml Namespace Operator, ml Function, ml Expressions . . . . 3-27
C Math Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
Atomic Subcharts That Call Exported Graphical Functions

Outside a Subchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
Atomic Subchart Input and Output Mapping . . . . . . . . . . . 3-28
Recursion and Cyclic Behavior . . . . . . . . . . . . . . . . . . . . . . 3-28
Custom C or C++ Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
Machine-Parented Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
Textual Functions with Literal String Arguments . . . . . . . . 3-30

Support Limitations for MATLAB for Code Generation . . . 3-31
Unsupported MATLAB for Code Generation Features . . . . . 3-31
Support Limitations for MATLAB for Code Generation Library

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31

Support Limitations for S-Functions . . . . . . . . . . . . . . . . . . 3-36
Enabling S-Functions in Simulink Design Verifier . . . . . . . 3-36
Support Limitations for S-Function Code . . . . . . . . . . . . . . 3-36
Considerations for Enabling S-Functions in Simulink Design

Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37
Source code protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

Working with Block Replacements
4

What Is Block Replacement? . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Block Replacement Effects on Test Generation . . . . . . . . . . . 4-3

Built-In Block Replacements . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Template for Block Replacement Rules . . . . . . . . . . . . . . . . . 4-8

Define Custom Block Replacements . . . . . . . . . . . . . . . . . . . . 4-9
Basic Workflow for Defining Custom Block Replacements . . . 4-9
Specify Replacement Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Write Block Replacement Rules . . . . . . . . . . . . . . . . . . . . . 4-10
Replace Multiport Switch Blocks . . . . . . . . . . . . . . . . . . . . . 4-10

vii



Execute Block Replacements . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
Configure Block Replacements . . . . . . . . . . . . . . . . . . . . . . 4-17
Replace Blocks in a Model . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

Specifying Parameter Configurations
5

Parameter Constraint Values . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Parameter Configuration for Analysis . . . . . . . . . . . . . . . . . . 5-2
Data Types in Parameter Configurations . . . . . . . . . . . . . . . 5-3
Parameters in Variant Subsystems . . . . . . . . . . . . . . . . . . . . 5-3

Define Constraint Values for Parameters . . . . . . . . . . . . . . . 5-4
Find Parameters and Autogenerate Constraints . . . . . . . . . . 5-6
Edit Parameter Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Highlight Constrained Parameters in Model . . . . . . . . . . . . . 5-9

Specify Parameter Constraint Values for Full Coverage . . 5-10
About This Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Construct Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Parameterize Constant Block . . . . . . . . . . . . . . . . . . . . . . . 5-12
Preload Workspace Variable . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Autogenerate Parameter Constraint . . . . . . . . . . . . . . . . . . 5-13
Analyze Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Simulate Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17

Store Parameter Constraints in MATLAB Code Files . . . . . 5-21
Export Parameter Constraints to File . . . . . . . . . . . . . . . . . 5-21
Import Parameter Constraints from File . . . . . . . . . . . . . . . 5-23

Define Constraint Values for Parameters in MATLAB Code
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24

Template Parameter Configuration File . . . . . . . . . . . . . . . 5-24
Syntax in Parameter Configuration Files . . . . . . . . . . . . . . 5-24

viii Contents



Detecting Design Errors
6

What Is Design Error Detection? . . . . . . . . . . . . . . . . . . . . . . . 6-2

Derived Ranges in Design Error Detection . . . . . . . . . . . . . . 6-3

Run a Design Error Detection Analysis . . . . . . . . . . . . . . . . . 6-5
Workflow for Detecting Design Errors . . . . . . . . . . . . . . . . . . 6-5
Understand the Analysis Results . . . . . . . . . . . . . . . . . . . . . 6-5
Review the Latest Analysis Results in the Model Explorer . . 6-8
Check For Design Errors using the Model Advisor . . . . . . . . 6-8

Check a Model for Dead Logic . . . . . . . . . . . . . . . . . . . . . . . . 6-10
Analyze Models for Dead Logic . . . . . . . . . . . . . . . . . . . . . . 6-10
Common Causes of Dead Logic . . . . . . . . . . . . . . . . . . . . . . 6-10
Dead Logic Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 6-10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

Dead Logic Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Detect Dead Logic Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Detect Dead and Active Logic . . . . . . . . . . . . . . . . . . . . . . . 6-12

Detect Dead Logic Caused by an Incorrect Value . . . . . . . . 6-13
Analyze the Fuel System Model . . . . . . . . . . . . . . . . . . . . . 6-13
Review the Results and Trace to the Model . . . . . . . . . . . . . 6-14
Investigate the Cause of the Dead Logic . . . . . . . . . . . . . . . 6-15
Update the Input Constraint and Re-Analyze the Model . . . 6-15

Model Objects That Receive Dead Logic Detection . . . . . . . 6-17
Abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18
Dead Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18
Discrete-Time Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
Enabled Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
Enabled and Triggered Subsystem . . . . . . . . . . . . . . . . . . . 6-20
Fcn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20
For Iterator, For Iterator Subsystem . . . . . . . . . . . . . . . . . . 6-20
If, If Action Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
Library-Linked Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
Logical Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
MATLAB Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
MinMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22

ix



Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22
Multiport Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22
Rate Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22
Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23
Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23
Stateflow Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
SwitchCase, SwitchCase Action Subsystem . . . . . . . . . . . . . 6-24
Triggered Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
Triggered Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25
While Iterator, While Iterator Subsystem . . . . . . . . . . . . . . 6-25

Detect Integer Overflow and Division-by-Zero Errors . . . . 6-26
About This Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-26
Analyze the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-26
Review the Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 6-27

Check for Specified Intermediate Minimum and Maximum
Signal Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31

Overview of Specified Minimum and Maximum Signal
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31

About This Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32
Create the Example Model . . . . . . . . . . . . . . . . . . . . . . . . . 6-32
Analyze the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34
Review the Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 6-34

Detect Out of Bound Array Access Errors . . . . . . . . . . . . . . 6-38
Design Error Detection for Out of Bound Array Access . . . . 6-38
Detect Out of Bound Array Access in Example Model . . . . . 6-39
Limitations of Support for Out of Bound Array Access Design

Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-44

Generating Test Cases
7

What Is Test Case Generation? . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Test Case Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Test Case Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

Workflow for Test Case Generation . . . . . . . . . . . . . . . . . . . . 7-4

x Contents



Generate Test Cases for Model Decision Coverage . . . . . . . . 7-5
Construct the Example Model . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Check Compatibility of the Example Model . . . . . . . . . . . . . . 7-6
Configure Test Generation Options . . . . . . . . . . . . . . . . . . . . 7-7
Analyze the Example Model . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Review Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Customize Test Generation . . . . . . . . . . . . . . . . . . . . . . . . . 7-17
Reanalyze the Example Model . . . . . . . . . . . . . . . . . . . . . . 7-19
Analyze Contradictory Models . . . . . . . . . . . . . . . . . . . . . . . 7-20

Use Test Generation Advisor to Identify Analyzable
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21

Test Generation Advisor . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
Test Generation Advisor Requirements . . . . . . . . . . . . . . . . 7-23
Identify Analyzable Components . . . . . . . . . . . . . . . . . . . . . 7-23
Analyze and Generate Tests for Model Components . . . . . . 7-23
Manually Select Components for Testing . . . . . . . . . . . . . . 7-26

Model Coverage Objectives for Test Generation . . . . . . . . . 7-27
Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
MCDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-28
Relational Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-28

Extending Existing Test Cases
8

When to Extend Existing Test Cases . . . . . . . . . . . . . . . . . . . . 8-2

Common Workflow for Extending Existing Test Cases . . . . . 8-4

Extend Test Cases for Model with Temporal Logic . . . . . . . . 8-5
Create Starting Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
Log Starting Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8
Extend Existing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 8-9
Verify Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11

Extend Test Cases for Closed-Loop System . . . . . . . . . . . . . 8-12
Log Starting Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12
Extend Existing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 8-15

xi



Extend Test Cases for Modified Model . . . . . . . . . . . . . . . . . 8-19
Create Starting Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 8-19
Extend Existing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 8-20

Achieving Test Cases for Missing Model Coverage
9

Generate Test Cases for Missing Coverage Data . . . . . . . . . . 9-2

Achieve Missing Coverage in Referenced Model . . . . . . . . . . 9-3
Programmatically Achieve Missing Coverage in Referenced

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Increase Coverage for Referenced Models in a Test Harness . 9-6

Missing Coverage in Subsystems and Model Blocks . . . . . . 9-11

Achieve Missing Coverage in Closed-Loop Simulation
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12

Record Coverage Data for the Model . . . . . . . . . . . . . . . . . . 9-12
Find Test Cases for Missing Coverage . . . . . . . . . . . . . . . . . 9-13

Modified Condition and Decision Coverage in Simulink
Design Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15

MCDC Definitions for Simulink Verification and Validation and
Simulink Design Verifier . . . . . . . . . . . . . . . . . . . . . . . . . 9-15

Verifying Model Components
10

What Is Component Verification? . . . . . . . . . . . . . . . . . . . . . 10-2
Component Verification Approaches . . . . . . . . . . . . . . . . . . 10-2
Simulink Design Verifier Tools for Component Verification . 10-2

Functions for Component Verification . . . . . . . . . . . . . . . . . 10-4

Verify a Component for Code Generation . . . . . . . . . . . . . . 10-6
About the Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6

xii Contents



Prepare the Component for Verification . . . . . . . . . . . . . . . 10-8
Record Coverage for the Component . . . . . . . . . . . . . . . . . . 10-9
Use Simulink Design Verifier Software to Record Additional

Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
Combine the Harness Models . . . . . . . . . . . . . . . . . . . . . . 10-12
Execute the Component in Simulation Mode . . . . . . . . . . . 10-13
Execute the Component in Software-in-the-Loop (SIL)

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13

Considering Specified Minimum and Maximum
Values for Inputs During Analysis

11
Minimum and Maximum Input Constraints . . . . . . . . . . . . . 11-2

Simulink Design Verifier Support for Specified Input Minimum
and Maximum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

Limitations of Simulink Design Verifier Support for Specified
Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . 11-3

Specify Input Ranges on Simulink and Stateflow
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4

Specify Input Ranges for Inport Blocks . . . . . . . . . . . . . . . . 11-4
Specify Input Ranges for Simulink.Signal Objects . . . . . . . . 11-5
Specify Input Ranges for Stateflow Data Objects . . . . . . . . . 11-6
Specify Input Ranges for Subsystems . . . . . . . . . . . . . . . . . 11-7
Specify Input Ranges for Global Data Stores . . . . . . . . . . . . 11-8
Specify Input Ranges for Bus Elements . . . . . . . . . . . . . . . 11-9

Specify Input Ranges in sldvData Fields . . . . . . . . . . . . . . 11-11

Proving Properties of a Model
12

What Is Property Proving? . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Proof Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Proof Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

xiii



Workflow for Proving Model Properties . . . . . . . . . . . . . . . . 12-4

Prove Properties in a Model . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
About This Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Construct Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
Check Compatibility of Example Model . . . . . . . . . . . . . . . . 12-7
Instrument Example Model . . . . . . . . . . . . . . . . . . . . . . . . . 12-8
Configure Property-Proving Options . . . . . . . . . . . . . . . . . . 12-9
Analyze Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10
Review Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10
Customize Example Proof . . . . . . . . . . . . . . . . . . . . . . . . . 12-19
Reanalyze Example Model . . . . . . . . . . . . . . . . . . . . . . . . . 12-20
Review Results of Second Analysis . . . . . . . . . . . . . . . . . . 12-20
Analyze Contradictory Models . . . . . . . . . . . . . . . . . . . . . . 12-23
Prove Properties in a Large Model . . . . . . . . . . . . . . . . . . 12-24

Prove System-Level Properties Using Verification Model 12-25
When to Use a Verification Model for Property Proving . . . 12-25
About this Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-25
Understand the Verification Model . . . . . . . . . . . . . . . . . . 12-25
Prove the Properties of the Design Model . . . . . . . . . . . . . 12-26
Fix the Verification Model . . . . . . . . . . . . . . . . . . . . . . . . . 12-27

Prove Properties in a Subsystem . . . . . . . . . . . . . . . . . . . . . 12-29

Model Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-30
Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-30
Temporal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-34

Reviewing the Results
13

Highlighted Results on the Model . . . . . . . . . . . . . . . . . . . . . 13-2
Results Review with Model Highlighting . . . . . . . . . . . . . . . 13-2
Simulink Design Verifier Results Inspector . . . . . . . . . . . . . 13-2
Enable Highlighted Results on a Model . . . . . . . . . . . . . . . . 13-3
Green Highlighting on Model . . . . . . . . . . . . . . . . . . . . . . . 13-5
Red Highlighting on Model . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Orange Highlighting on Model . . . . . . . . . . . . . . . . . . . . . . 13-6
Gray Highlighting on Model . . . . . . . . . . . . . . . . . . . . . . . . 13-8

xiv Contents



Simulink Design Verifier Data Files . . . . . . . . . . . . . . . . . . . 13-9
Data File Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9
Contents of sldvData Structure . . . . . . . . . . . . . . . . . . . . . 13-9
Model Information Fields in sldvData . . . . . . . . . . . . . . . 13-10
Simulate Models with Data Files . . . . . . . . . . . . . . . . . . . 13-15
Load Results from Data Files . . . . . . . . . . . . . . . . . . . . . . 13-15

Simulink Design Verifier Harness Models . . . . . . . . . . . . . 13-16
Harness Model Generation . . . . . . . . . . . . . . . . . . . . . . . . 13-16
Create a Harness Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16
Anatomy of a Harness Model . . . . . . . . . . . . . . . . . . . . . . 13-17
Configuration of the Harness Model . . . . . . . . . . . . . . . . . 13-21
Simulate the Harness Model . . . . . . . . . . . . . . . . . . . . . . . 13-21

Export Test Cases to Simulink Test . . . . . . . . . . . . . . . . . . 13-24
Overall Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24
Test Case Generation Example . . . . . . . . . . . . . . . . . . . . . 13-24

Simulink Design Verifier Reports . . . . . . . . . . . . . . . . . . . . 13-27
Simulink Design Verifier Report Generation . . . . . . . . . . . 13-27
Create Analysis Reports . . . . . . . . . . . . . . . . . . . . . . . . . . 13-27
Front Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-28
Summary Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-28
Analysis Information Chapter . . . . . . . . . . . . . . . . . . . . . . 13-28
Derived Ranges Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 13-33
Objectives Status Chapters . . . . . . . . . . . . . . . . . . . . . . . . 13-34
Model Items Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-41
Design Errors Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-42
Test Cases Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-43
Properties Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-48

Simulink Design Verifier Log Files . . . . . . . . . . . . . . . . . . . 13-50

Review Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-52
View Active Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-52
Load Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-52
Explore Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-53

xv



Analyzing Large Models and Improving
Performance

14
Sources of Model Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 14-2

Analyze a Large Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
Types of Large Model Problems . . . . . . . . . . . . . . . . . . . . . 14-3
Summarize Model Hierarchy and Compatibility . . . . . . . . . 14-4
Use the Default Parameter Values . . . . . . . . . . . . . . . . . . . 14-4
Modify the Analysis Parameters . . . . . . . . . . . . . . . . . . . . . 14-6
Use the Large Model Optimization . . . . . . . . . . . . . . . . . . . 14-6
Stop the Analysis Before Completion . . . . . . . . . . . . . . . . . 14-6

Increase Allocated Memory for Analysis Report
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8

Manage Model Data to Simplify the Analysis . . . . . . . . . . . . 14-9
Simplify Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
Constrain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9

Partition Model Inputs for Incremental Test Generation . 14-13

Bottom-Up Approach to Model Analysis . . . . . . . . . . . . . . . 14-15

Extract Subsystems for Analysis . . . . . . . . . . . . . . . . . . . . . 14-16
Overview of Subsystem Extraction . . . . . . . . . . . . . . . . . . 14-16
sldvextract Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-16
Structure of the Extracted Model . . . . . . . . . . . . . . . . . . . 14-17
Analyze Subsystems That Read from Global Data Storage . 14-17
Analyze Function-Call Subsystems . . . . . . . . . . . . . . . . . . 14-20

Logical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-23

Models with Large Verification State Space . . . . . . . . . . . 14-24

Counters and Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-25

Prove Properties in Large Models . . . . . . . . . . . . . . . . . . . . 14-27
Find Property Violations While Designing Your Model . . . 14-27
Combine Proving Properties and Finding Proof Violations . 14-28

xvi Contents



Simulink Design Verifier Configuration Parameters
15

Simulink Design Verifier Options . . . . . . . . . . . . . . . . . . . . . 15-2
Options in Configuration Parameters Dialog Box . . . . . . . . 15-2
Design Verification Options Objects . . . . . . . . . . . . . . . . . . 15-2
Command-Line Parameters for Design Verification Options 15-2

Design Verifier Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-11
Design Verifier Pane Overview . . . . . . . . . . . . . . . . . . . . . 15-12
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-12
Maximum analysis time . . . . . . . . . . . . . . . . . . . . . . . . . . 15-14
Display unsatisfiable test objectives . . . . . . . . . . . . . . . . . 15-15
Automatic stubbing of unsupported blocks and functions . . 15-16
Support S-Functions in the analysis . . . . . . . . . . . . . . . . . 15-17
Use specified input minimum and maximum values . . . . . 15-18
Output folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-19
Make output file names unique by adding a suffix . . . . . . . 15-20
Check Model Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 15-21
Generate Tests/Detect Errors/Prove Properties . . . . . . . . . 15-22

Design Verifier Pane: Block Replacements . . . . . . . . . . . . 15-23
Block Replacements Pane Overview . . . . . . . . . . . . . . . . . 15-24
Apply block replacements . . . . . . . . . . . . . . . . . . . . . . . . . 15-25
List of block replacement rules . . . . . . . . . . . . . . . . . . . . . 15-26
File path of the output model . . . . . . . . . . . . . . . . . . . . . . 15-27

Design Verifier Pane: Parameters . . . . . . . . . . . . . . . . . . . . 15-28
Parameters Pane Overview . . . . . . . . . . . . . . . . . . . . . . . . 15-30
Enable parameter configuration . . . . . . . . . . . . . . . . . . . . 15-30
Use parameter table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-31
Parameter configuration file . . . . . . . . . . . . . . . . . . . . . . . 15-32
Browse... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-33
Edit... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-33
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-33
Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-33
Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-34
Highlight in Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-34
Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-34
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-35
Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-35
Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-36
Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-37

xvii



Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-37
Model Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-38
Find in Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-38
Add from File... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-38
Export to File... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-39

Design Verifier Pane: Test Generation . . . . . . . . . . . . . . . . 15-40
Test Generation Pane Overview . . . . . . . . . . . . . . . . . . . . 15-42
Model coverage objectives . . . . . . . . . . . . . . . . . . . . . . . . . 15-43
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-44
Test objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-45
Maximum test case steps . . . . . . . . . . . . . . . . . . . . . . . . . 15-46
Test suite optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-47
Extend existing test cases . . . . . . . . . . . . . . . . . . . . . . . . . 15-48
Data file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-49
Browse... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-50
Ignore objectives satisfied by existing test cases . . . . . . . . 15-50
Ignore objectives satisfied in existing coverage data . . . . . 15-51
Coverage data file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-52
Browse... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-52
Ignore objectives based on filter . . . . . . . . . . . . . . . . . . . . 15-52
Coverage filter file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-53
Browse... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-54
Include relational boundary objectives . . . . . . . . . . . . . . . . 15-54
Floating point absolute tolerance . . . . . . . . . . . . . . . . . . . 15-55
Floating point relative tolerance . . . . . . . . . . . . . . . . . . . . 15-56

Design Verifier Pane: Design Error Detection . . . . . . . . . . 15-58
Design Error Detection Pane Overview . . . . . . . . . . . . . . . 15-59
Dead logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-59
Identify active logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-59
Integer overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-60
Division by zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-61
Check specified intermediate minimum and maximum

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-61
Out of bound array access . . . . . . . . . . . . . . . . . . . . . . . . . 15-62

Design Verifier Pane: Property Proving . . . . . . . . . . . . . . . 15-64
Property Proving Pane Overview . . . . . . . . . . . . . . . . . . . . 15-65
Assertion blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-66
Proof assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-67
Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-68
Maximum violation steps . . . . . . . . . . . . . . . . . . . . . . . . . 15-69

xviii Contents



Design Verifier Pane: Results . . . . . . . . . . . . . . . . . . . . . . . 15-70
Results Pane Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-71
Save test data to file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-72
Data file name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-73
Include expected output values . . . . . . . . . . . . . . . . . . . . . 15-74
Randomize data that do not affect the outcome . . . . . . . . . 15-75
Display results of the analysis on the model . . . . . . . . . . . 15-76
Generate separate harness model after analysis . . . . . . . . 15-78
Harness model file name . . . . . . . . . . . . . . . . . . . . . . . . . . 15-79
Reference input model in generated harness . . . . . . . . . . . 15-80
Test File Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-82
Test Harness Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-83

Design Verifier Pane: Report . . . . . . . . . . . . . . . . . . . . . . . . 15-84
Report Pane Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-85
Generate report of the results . . . . . . . . . . . . . . . . . . . . . . 15-86
Generate additional report in PDF format . . . . . . . . . . . . . 15-87
Report file name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-88
Include screen shots of properties . . . . . . . . . . . . . . . . . . . 15-89
Display report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-90

Model Slicer
16

Highlight Functional Dependencies . . . . . . . . . . . . . . . . . . . 16-2

Refine Highlighted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-8
Define a Simulation Time Window . . . . . . . . . . . . . . . . . . . 16-8
Exclude Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-13
Exclude Inputs of a Switch Block . . . . . . . . . . . . . . . . . . . 16-17

Create a Simplified Standalone Model . . . . . . . . . . . . . . . . 16-21

Highlight Active Time Intervals by Using Activity-Based
Time Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-22

Highlighting the Active Time Intervals of a Stateflow State or
Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-22

Activity-Based Time Slicing Limitations and
Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-31

Stateflow State and Transition Activity . . . . . . . . . . . . . . . 16-31

xix



Simplify a Standalone Model by Inlining Content . . . . . . . 16-32

Workflow for Dependency Analysis . . . . . . . . . . . . . . . . . . . 16-36
Dependency Analysis Workflow . . . . . . . . . . . . . . . . . . . . . 16-36
Dependency Analysis Objectives . . . . . . . . . . . . . . . . . . . . 16-37

Configure Model Highlight and Sliced Models . . . . . . . . . . 16-39
Model Slice Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-39
Model Slicer Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-39
Storage Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-39
Refresh Highlighting Automatically . . . . . . . . . . . . . . . . . 16-40
Sliced Model Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-40
Trivial Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-41
Inline Content Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-41

Model Slicer Considerations and Limitations . . . . . . . . . . 16-43
Model Highlighting and Model Editing . . . . . . . . . . . . . . . 16-43
Standalone Sliced Model Generation . . . . . . . . . . . . . . . . . 16-43
Sliced Model Considerations . . . . . . . . . . . . . . . . . . . . . . . 16-44
Port Attribute Considerations . . . . . . . . . . . . . . . . . . . . . . 16-44
Simulation Time Window Considerations . . . . . . . . . . . . . 16-45
Simulation-based Sliced Model Simplifications . . . . . . . . . 16-45
Starting Points Not Supported . . . . . . . . . . . . . . . . . . . . . 16-47
Model Slicer Support Limitations for Simulink Software

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-47
Model Slicer Support Limitations for Simulink Blocks . . . . 16-47
Model Slicer Support Limitations for Stateflow . . . . . . . . . 16-49

Using Model Slicer with Stateflow . . . . . . . . . . . . . . . . . . . 16-51
Model Slicer Highlighting Behavior for Stateflow Elements 16-51
Using Model Slicer with Stateflow State Transition Tables 16-52
Support Limitations for Using Model Slicer with Stateflow 16-52

Isolating Dependencies of an Actuator Subsystem . . . . . . 16-53
Choose Starting Points and Direction . . . . . . . . . . . . . . . . 16-53
View Precedents and Generate Model Slice . . . . . . . . . . . . 16-55

Isolate Subsystems for Functional Testing . . . . . . . . . . . . . 16-58
Isolate a Subsystem with Simulation-Based Inputs . . . . . . 16-58

Use Existing .slslicex Simulation Time Window Data to
Highlight Functional Dependencies . . . . . . . . . . . . . . . . 16-63

xx Contents



Programmatically Resolve Unexpected Behavior in a Model
with Model Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-64

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-64
Find and Isolate the Area of the Model Responsible for

Unexpected Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-64
Investigate the Sliced Model and Debug the Source Model . 16-70

Simplification of Variant Systems . . . . . . . . . . . . . . . . . . . . 16-76
Use the Variant Reducer to Simplify Variant Systems . . . . 16-76
Use Model Slicer to Simplify Variant Systems . . . . . . . . . . 16-76

Verification and Validation
17

Test Model Against Requirements and Report Results . . . . 17-2
Requirements Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2
Test a Cruise Control Safety Requirement . . . . . . . . . . . . . 17-2

Analyze a Model for Standards Compliance and Design
Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-6

Standards and Analysis Overview . . . . . . . . . . . . . . . . . . . . 17-6
Check Model for Style Guideline Violations and Design

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-6

Perform Functional Testing and Analyze Test Coverage . . 17-9
Functional Testing and Coverage Analysis Overview . . . . . . 17-9
Incrementally Increase Test Coverage Using Test Case

Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9

Analyze Code and Test Software-in-the-Loop . . . . . . . . . . 17-13
Code Analysis and Testing Software-in-the-Loop Overview 17-13
Analyze Code for Defects, Metrics, and MISRA C:2012 . . . 17-13

Module Verification and Testing Processor-in-the-Loop . . 17-22
Module Verification and Testing Processor-in-the-Loop

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-22

Test a Model in Real Time . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23
Real-Time Testing and Testing Production Models

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23

xxi



Glossary
 

xxii Contents



Acknowledgments
The Simulink® Design Verifier™ software uses Prover Plug-In® products from Prover®

Technology to generate test cases and prove model properties.

®

xxiii





1

Getting Started

• “Simulink Design Verifier Product Description” on page 1-2
• “Simulink Design Verifier Block Library” on page 1-3
• “Analyze a Model” on page 1-4
• “Generate Test Cases for a Subsystem” on page 1-26
• “Analyze a Stateflow Atomic Subchart” on page 1-28
• “Basic Workflow for Simulink Design Verifier” on page 1-31



1 Getting Started

Simulink Design Verifier Product Description
Identify and isolate design errors and generate tests

Simulink Design Verifier uses formal methods to identify hidden design errors in models
without extensive simulation runs. It detects blocks in the model that result in integer
overflow, dead logic, array access violations, division by zero, and requirement violations.
For each error it produces a simulation test case for debugging.

Simulink Design Verifier generates test inputs for model coverage and custom objectives.
It also lets you augment and extend existing test cases. These test cases drive your model
to satisfy condition, decision, modified condition/decision (MCDC), and custom coverage
objectives.

The Model Slicer tool in Simulink Design Verifier isolates problematic behavior in a
model using a combination of dynamic and static analysis. It lets you highlight and trace
functional dependencies of ports, signals, and blocks, and slice a large model into smaller,
standalone models for analysis. You can view blocks affecting a subsystem output and
trace a signal path through multiple switches and logic. The Variant Reducer tool
enables you to simplify models containing multiple variants by creating sliced models
based on active variant configurations.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features

• Test case input generation from functional requirements and model coverage
objectives, including condition, decision, and MCDC

• Detection of dead logic, integer and fixed-point overflows, array access violations,
division by zero, and violations of design requirements

• Verification blocks for modeling functional and safety requirements
• Property proving, with generation of violation examples for analysis and debugging
• Model Slicer for analyzing functional dependencies and problematic behavior in large

models
• Variant Reducer for creating sliced models based on active variant configurations
• Polyspace® and Prover formal verification engines for fixed-point and floating-point

models

1-2

http://www.mathworks.com/discovery/formal-verification.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/do-178/


 Simulink Design Verifier Block Library

Simulink Design Verifier Block Library

To open the Simulink Design Verifier block library, at the MATLAB® command prompt,
type sldvlib.

The Simulink Design Verifier block library has three categories of blocks:

• Objectives and Constraints — Blocks that define custom objectives and constraints
• Temporal Operators — Blocks that define temporal properties on Boolean signals
• Verification Utilities — Miscellaneous verification utilities

The block library also has a sublibrary, Example Properties, that includes examples of
how to specify common properties in your model. You can easily adapt these examples for
use in your models.

1-3



1 Getting Started

Analyze a Model

In this section...

“About This Example” on page 1-4
“Open the Model” on page 1-4
“Generate Test Cases” on page 1-5
“Combine Test Cases” on page 1-24

About This Example

The following sections describe an example model, Cruise Control Test Generation.
This example illustrates how to use Simulink Design Verifier to generate test cases
that achieve complete model coverage. Through this example, you learn how to analyze
models with Simulink Design Verifier and interpret the results.

Open the Model

To open the Cruise Control Test Generation model, at the MATLAB prompt, enter:

sldvdemo_cruise_control

1-4



 Analyze a Model

Generate Test Cases

• “Run Analysis” on page 1-6

1-5



1 Getting Started

• “Generate Analysis Results” on page 1-8
• “Highlight Analysis Results on Model” on page 1-9
• “Generate Detailed Analysis Report” on page 1-12
• “Create Harness Model” on page 1-19
• “Simulate Tests and Produce Model Coverage Report” on page 1-23

Run Analysis

To generate test cases for the Cruise Control Test Generation model, open the model
window and double-click the block labeled Run.

Simulink Design Verifier begins analyzing the model to generate test cases, and the
Simulink Design Verifier Results Summary window opens. The Results Summary
window displays a running log showing the progress of the analysis.

1-6



 Analyze a Model

If you need to terminate an analysis while it is running, click Stop. The software asks if
you want to produce results. If you click Yes, the software creates a data file based on the
results achieved so far. The path name of the data file appears in the Results Summary
window.

The data file is a MAT-file that contains a structure named sldvData. This structure
stores the data that the software gathers and produces during the analysis.

1-7



1 Getting Started

For more information, see “Simulink Design Verifier Data Files” on page 13-9.

Generate Analysis Results

When Simulink Design Verifier completes its analysis of the
sldvdemo_cruise_control model, the Results Summary window displays several
options:

• Highlight analysis results on model
• Generate detailed analysis report
• Create harness model
• Simulate tests and produce a model coverage report

Note: When you analyze other models, depending on the results of the analysis, you may
see a subset of these four options.

1-8



 Analyze a Model

The sections that follow describe these options in detail.

Highlight Analysis Results on Model

In the Simulink Design Verifier Results Summary window, if you click Highlight
analysis results on model, the software highlights objects in the model in three
different colors, depending on the analysis results:

• “Green: Objectives Satisfied” on page 1-10

1-9



1 Getting Started

• “Orange: Objectives Undecided” on page 1-10
• “Red: Objectives Unsatisfiable” on page 1-11

When you highlight the analysis results on a model, the Simulink Design Verifier Results
Inspector opens. When you click an object in the model that has analysis results, the
Results Inspector displays the results summary for that object.
Green: Objectives Satisfied

Green outline indicates that the analysis generated test cases for all the objectives for
that block. If the block is a subsystem or Stateflow® atomic subchart, the green outline
indicates that the analysis generated test cases for all objectives associated with the child
objects.

For example, in the sldvdemo_cruise_control model, the green outline shows that
the PI controller subsystem satisfied all test objectives. The Results Inspector lists the
two satisfied test objectives for the PI controller subsystem.

Orange: Objectives Undecided

Orange outline indicates that the analysis was not able to determine if an objective was
satisfiable or not. This situation might occur when:

1-10



 Analyze a Model

• The analysis times out
• The software satisfies test objectives without generating test cases due to:

• Automatic stubbing errors
• Limitations of the analysis engine

In the following example, the analysis timed out before it could determine if one of the
objectives for the Discrete-Time Integrator block was satisfiable.

Red: Objectives Unsatisfiable

Red outline indicates that the analysis found some objectives for which it could not
generate test cases, most likely due to unreachable design elements in your model.

In the following example, input 2 always satisfies the criterion for the Switch block, so
the Switch block never passes through the value of input 3.

1-11



1 Getting Started

Generate Detailed Analysis Report

In the Simulink Design Verifier Results Summary window, if you click Generate
detailed analysis report, the software saves and then opens a detailed report of the
analysis. The path to the report is:

<current_folder>/sldv_output/...

     sldvdemo_cruise_control/sldvdemo_cruise_control_report.html

The HTML report includes the following chapters.

1-12



 Analyze a Model

For a description of each report chapter, see:

• “Summary” on page 1-13
• “Analysis Information” on page 1-14
• “Test Objectives Status” on page 1-15
• “Model Items” on page 1-17
• “Test Cases” on page 1-18

Summary

In the Table of Contents, click Summary to display the Summary chapter, which
includes the following information:

• Name of the model
• Mode of the analysis (test generation, property proving, design error detection)
• Status of the analysis
• Length of the analysis in seconds
• Number of objectives satisfied

1-13



1 Getting Started

Analysis Information

In the Table of Contents, click Analysis Information to display information about the
analyzed model and the analysis options.

1-14



 Analyze a Model

Test Objectives Status

In the Table of Contents, click Test Objectives Status to display a table of satisfied
objectives. The following figure shows a partial list of the objectives satisfied in the
Cruise Control Test Generation model.

1-15



1 Getting Started

The Objectives Satisfied table lists the following information for the model:

• # — Objective number
• Type — Objective type
• Model Item — Element in the model for which the objective was tested. Click this

link to display the model with this element highlighted.
• Description — Description of the objective
• Test Case — Test case that achieves the objective. Click this link for more

information about that test case.

In the row for objective 34, click the test case number (7) to display more information
about Test Case 7 in the report's Test Cases chapter.

1-16



 Analyze a Model

In this example, Test Case 7 satisfies one objective, that the integration result be greater
than or equal to the upper limit T in the Discrete-Time Integrator block. The table lists
the values of the six signals from time 0 through time 0.06.

Model Items

In the Table of Contents, click Model Items to see detailed information about each
item in the model that defines coverage objectives. This table includes the status of the
objective at the end of the analysis. Click the links in the table for detailed information
about the satisfied objectives.

1-17



1 Getting Started

Test Cases

In the Table of Contents, click Test Cases to display detailed information about each
generated test case, including:

• Length of time to execute the test case
• Number of objectives satisfied
• Detailed information about the satisfied objectives
• Input data

1-18



 Analyze a Model

For an example, see the section for Test Case 7 in “Test Objectives Status” on page
1-15.

Create Harness Model

In the Simulink Design Verifier Results Summary window, if you click Create
harness model, the software creates and opens a harness model named
sldvdemo_cruise_control_harness.

The harness model contains the following blocks:

• The Test Case Explanation block is a DocBlock block that documents the generated
test cases. Double-click the Test Case Explanation block to view a description of each
test case for the objectives that the test case satisfies.

1-19



1 Getting Started

• The Test Unit block is a Subsystem block that contains a copy of the original model
that the software analyzed. Double-click the Test Unit block to view its contents and
confirm that it is a copy of the Cruise Control Test Generation model.

1-20



 Analyze a Model

Note: You can configure the harness model to reference the model that you are
analyzing using a Model block instead of using a subsystem. In the Configuration
Parameters dialog box, on the Design Verifier > Results pane, select Generate
separate harness model after analysis and Reference input model in
generated harness.

• The Inputs block is a Signal Builder block that contains the generated test case
signals. Double-click the Inputs block to open the Signal Builder dialog box and view
the eight test case signals.

• The Size-Type block is a subsystem that transmits signals from the Inputs block to
the Test Unit block. This block verifies that the size and data type of the signals are
consistent with the Test Unit block.

The Signal Builder dialog box contains eight test cases.

1 To view Test Case 7, from the Active Group list, select Test Case 7.

In Test Case 7 at 0.01 seconds:

• The enable and inc signals remain 1.
• The brake and dec signals remain 0.
• The set signal transitions from 1 to 0.
• The speed signal transitions from 100 to 0.

1-21



1 Getting Started

In the Signal Builder block, the signal group satisfies the test objectives described in
the Test Case Explanation block.

2 To confirm that Simulink Design Verifier achieved complete model coverage,
simulate the harness model using all the test cases. In the Signal Builder dialog box,

click the Run all and produce coverage button .

1-22



 Analyze a Model

The Simulink software simulates all the test cases. The Simulink Verification
and Validation™ software collects coverage data for the harness model
and displays a coverage report. The report summary shows that the
sldvdemo_cruise_control_harness model achieves 100% coverage.

Simulate Tests and Produce Model Coverage Report

In the Simulink Design Verifier Results Summary window, if you click Simulate
tests and produce a model coverage report, the software simulates the model and
produces a coverage report for the sldvdemo_cruise_control model. The software
stores the report with the following name:

<current_folder>/sldv_output/sldvdemo_cruise_control/...

  sldvdemo_cruise_control_report.html

When you click Run all and produce coverage to simulate tests in the harness model,
you may see the following differences between this coverage report and the report you
generated for the model itself:

• The harness model coverage report might contain additional time steps. When you
collect coverage for the harness model, the model stop time equals the stop time for
the longest test case. As a result, you might achieve additional coverage when you
simulate the shorter test cases.

• The cyclomatic complexity coverage for the Test Unit subsystem in the harness model
might be different than the coverage for the model itself due to the structure of the
harness model.

1-23



1 Getting Started

Combine Test Cases

If you prefer to review results that are combined into a smaller number of test cases,
set the Test suite optimization parameter to LongTestcases. When you use the
LongTestcases optimization, the analysis generates fewer, but longer, test cases that
each satisfy multiple test objectives. This optimization creates a more efficient analysis
and results that are easier to review.

Open the sldvdemo_cruise_control model and rerun the analysis with the
LongTestcases optimization:

1 Select Analysis > Design Verifier > Options.
2 In the Configuration Parameters dialog box, in the Select tree on the left side, under

the Design Verifier category, select Test Generation.
3 Set the Test suite optimization parameter to LongTestcases.
4 Click Apply and OK to close the Configuration Parameters dialog box.
5 In the sldvdemo_cruise_control model, double-click the block labeled Run.
6 In the Results Summary window, click Create harness model.

In the harness model, the Signal Builder block and the Test Case Explanation block
now contain one longer test case instead of the eight shorter test cases created
earlier in “Generate Test Cases” on page 1-5.

1-24



 Analyze a Model

7 Click Run all and produce coverage to collect coverage.

The analysis still satisfies all 34 objectives.

1-25



1 Getting Started

Generate Test Cases for a Subsystem
You can analyze a subsystem within a model. This technique is good for large models,
where you want to review the analysis in smaller, manageable reports.

This example shows how to analyze the Controller subsystem in the
sldvdemo_cruise_control model.

1 Open the example model:

sldvdemo_cruise_control

2 Right-click the Controller subsystem, and select Design Verifier > Enable ‘Treat
as Atomic Unit’ to Analyze.

The Function Block Parameters dialog box for the Controller subsystem opens.
3 Select Treat as atomic unit.

An atomic subsystem executes as a unit relative to the parent model. Subsystem
block execution does not interleave with parent block execution. You can extract
atomic subsystems for use as standalone models.

You must set the Treat as atomic unit parameter to analyze a subsystem with
Simulink Design Verifier.

After you set the parameter, other parameters become available, but you can ignore
them.

4 Click OK to close the dialog box.
5 Select File > Save As and save the Cruise Control Test Generation model with a

new name.
6 To start the subsystem analysis and generate test cases, right-click the Controller

subsystem, and select Design Verifier > Generate Tests for Subsystem.
7 The Simulink Design Verifier software analyzes the subsystem. When the analysis

is complete, view the analysis results for the Controller subsystem by clicking one of
the following options:

• Highlight analysis results on model
• Generate detailed analysis report
• Create harness model
• Simulate tests and produce a model coverage report

1-26



 Generate Test Cases for a Subsystem

Note: After processing a certain number of objectives, if the analysis stops, or if the
analysis times out, you can use the Test Generation Advisor to better understand
which subsystems are causing the problem. For more information, see “Use Test
Generation Advisor to Identify Analyzable Components” on page 7-21.

8 Review the results of the subsystem analysis and compare them to the results of the
full-model analysis described in “Analyze a Model” on page 1-4:

• The subsystem analysis analyzes the Controller as a standalone model.
• The Controller subsystem contains all the test objectives in the Cruise Control

Test Generation model. Both analyses generate the same test cases.

1-27



1 Getting Started

Analyze a Stateflow Atomic Subchart

In a Stateflow chart, an atomic subchart is a graphical object that allows you to reuse the
same state or subchart across multiple charts and models. You can use Simulink Design
Verifier to analyze atomic subcharts individually. You do not have to analyze the chart
that contains the atomic subchart, or the model that contains the chart.

If you are having problems analyzing a large model, analyzing an atomic subchart in
a controlled environment is helpful. As described in “Bottom-Up Approach to Model
Analysis” on page 14-15, by analyzing atomic subcharts or other components in the
model hierarchy individually, you can analyze a model to:

• Solve problems that slow down or prevent test generation, property proving, or design
error detection.

• Analyze model components that are unreachable in the context of the container model
or chart.

Note: For more information about atomic subcharts, see “What Is an Atomic Subchart?”
(Stateflow) in the Stateflow documentation.

Analyze an Atomic Subchart Using the Simulink Design Verifier Software

The sf_atomic_sensor_pair example model models a redundant sensor pair
using atomic subcharts. This example analyzes the Sensor1 subchart in the
RedundantSensors chart.

1 Open the sf_atomic_sensor_pair example model:

sf_atomic_sensor_pair

This model demonstrates how to model a simple redundant sensor pair using atomic
subcharts.

2 Double-click the RedundantSensors chart to open it.

1-28



 Analyze a Stateflow Atomic Subchart

This Stateflow chart has two atomic subcharts:

• Sensor1

• Sensor2

3 To analyze the Sensor1 subchart using Simulink Design Verifier, right-click the
subchart and select Design Verifier > Generate Tests for Subchart.

During the analysis, the software creates a Simulink model named Sensor1 that
contains the Sensor1 subchart. The new model contains Inport and Outport blocks
that respectively correspond to the data objects u and y in the subchart.

1-29



1 Getting Started

The software saves the new model and other files generated by the analysis in:

<current_folder>/sldv_output/Sensor1

4 When the analysis is complete, view the analysis results for the Sensor1 subchart
by clicking one of the following options:

• Highlight analysis results on model
• Generate detailed analysis report
• Create harness model
• Simulate tests and produce a model coverage report

1-30



 Basic Workflow for Simulink Design Verifier

Basic Workflow for Simulink Design Verifier

The basic workflow for analyzing your model is described in the following steps, with
links to related documentation.

Step Action See...

1 Check the compatibility of your model. “Check Model Compatibility” on page 3-2
2 If you want to work around compatibility

limitations in your model or customize
model elements for analysis, you can
use Simulink Design Verifier block
replacement rules. If you want to generate
additional values for parameters in your
model during analysis, use Simulink
Design Verifier parameter configurations.

• “What Is Block Replacement?” on page
4-2

• “Parameter Constraint Values” on page
5-2

3 Set Simulink Design Verifier options. “Simulink Design Verifier Options” on page
15-2

4 If you plan to generate test cases or prove
properties in your model, first run design
error detection for integer overflow and
division by zero.

• “What Is Design Error Detection?” on page
6-2

• “Detect Integer Overflow and Division-by-
Zero Errors” on page 6-26

5 Analyze your model to:

• Detect design errors
• Generate test cases
• Prove properties

• “Run a Design Error Detection Analysis” on
page 6-5

• “Workflow for Test Case Generation” on
page 7-4

• “Workflow for Proving Model Properties” on
page 12-4

6 Generate the results. “Generate Analysis Results” on page 1-8
7 Interpret the results. “Results Interpretation and Use”

1-31





2

How the Simulink Design Verifier
Software Works

• “Analyze a Simple Model” on page 2-2
• “Model Blocks” on page 2-4
• “Block Reduction” on page 2-5
• “Inlined Parameters” on page 2-6
• “Large Models” on page 2-7
• “Handle Incompatibilities with Automatic Stubbing” on page 2-8
• “Nonfinite Data” on page 2-15
• “Approximations” on page 2-16
• “Logic Operations Short-Circuiting” on page 2-20



2 How the Simulink Design Verifier Software Works

Analyze a Simple Model

This simple model includes two Logical Operator blocks and a Memory block. The
persistent information in this model is limited to the Boolean value of the Memory
block. The input to the model is a single Boolean value. The following table describes the
complete behavior of the model, including the behavior that results from an arbitrarily
long sequence of inputs.

# Input Memory Value Output of XOR Block =
Next Memory Value

Output of AND Block

1 false false false false

2 true false true false

3 false true true false

4 true true false true

The test objective is to generate test cases that result in a true output. A true output
results when the input is true, and the output of the Memory block is true. Test case
generation follows a path to reach this condition, which depends on the initial model
conditions:

• If the initial memory value is true, the test case is a single time step where the input
is true.

• If the initial memory value is false, the test case is two time steps:

1 The input value is true and the memory value is false (row 2). Thus, the output
of the XOR block is true, making the memory value true.

2 Now that the input value and memory value are both true (row 4), the output is
true, and the analysis achieves the test objective.

2-2



 Analyze a Simple Model

An infinite number of test cases can cause the output to be true, and regardless of the
state value, the output can be held false for an arbitrary time before making it true.
When Simulink Design Verifier searches, it returns the first test case it encounters that
satisfies the objective. This case is invariably the simulation with the fewest time steps.
Sometimes you may find this result undesirable because it is unrealistic or does not
satisfy some other test requirement.

The same basic principles from this example apply to property proving and test case
generation. During test case generation, option parameters explicitly specify the search
criteria. For example, you can specify that Simulink Design Verifier find paths for all
block outputs or find only those paths that cause the block output to be true.

During a property proving analysis, you specify a functional requirement, or property,
that you want Simulink Design Verifier to prove, for example, that the output is always
true. If the search completes without finding a path that violates the property, the
property is proven. If the software finds a path where the output is false, it creates a
counterexample that causes the output to be false.

During an error detection analysis, Simulink Design Verifier identifies objectives where
data overflow or division-by-zero errors can and cannot occur. The analysis creates test
cases that demonstrate how the errors can occur.

2-3



2 How the Simulink Design Verifier Software Works

Model Blocks

If your model contains Model blocks that reference external models, test creation occurs
for the top-level model, considering each referenced model in its execution context.

If multiple Model blocks reference the same model, generated tests attempt to satisfy test
objectives for each instance of the referenced model in its individual context in the top-
level model. If you have three Model blocks that reference a certain model, the analysis
produces results for all three instances.

If you collect coverage using the generated test cases, the cumulative coverage reflects
the multiple instances of the same referenced model. The simulation produces one set of
coverage results for each referenced model; if you have three Model blocks that reference
a certain model, the simulation produces one set of results for that referenced model.

For example, consider a top-level model with three Model blocks referencing the same
model. The referenced model has three test objectives. Analyzing the top-level model
produces nine test objectives. If you simulate the model with the nine test cases, the
coverage results for that referenced model specify three test objectives.

2-4



 Block Reduction

Block Reduction

Block reduction achieves faster execution during model simulation and in generated
code. When block reduction is enabled, certain block groups can be collapsed into a single
block, or even removed entirely.

With Simulink Design Verifier, block reduction happens automatically, and blocks in
unused code paths are eliminated from the model. Simulink Design Verifier results do
not include test objectives for blocks that have been reduced.

Consider the Switch block in the following model.

For this Switch block, the control input is always 0. If the Criteria for passing first
input block parameter is u2 ~= 0, the Switch block always passes the third input
through to the output port. When you analyze this model, Simulink Design Verifier
removes the Switch block from the model and does not report any test objectives for the
Switch block.

For more information about block reduction, see the description of the “Block reduction”
(Simulink) parameter.

2-5



2 How the Simulink Design Verifier Software Works

Inlined Parameters

Setting Default parameter behavior to Inlined on the Optimization > Signals
and Parameters pane of the Configuration Parameters dialog box optimizes Simulink
models by transforming tunable parameters into constant values. For example, suppose
you have a Gain block whose Gain parameter is a, where a is defined in the model
workspace. During code generation, Simulink converts that Gain parameter to a
constant value, as defined in the workspace.

When Simulink Design Verifier translates a model, it transforms all tunable parameters
in the model into constant values, even if you set Default parameter behavior to
Inlined.

To tune parameters for an analysis, define parameter values in a parameter
configuration file and specify that file in the Configuration Parameters > Design
Verifier > Parameters pane to apply those parameter values during the analysis. For
example, to constrain the values of a Gain parameter a to integer values from 4 to 10, in
the parameter configuration file, specify the following:

params.a = int8([4 10]);

The analysis generates the specified values and returns results for those values.

For detailed information about how to specify parameters during a Simulink Design
Verifier analysis, see “Define Constraint Values for Parameters” on page 5-4.

2-6



 Large Models

Large Models

In larger, more complicated models, Simulink Design Verifier uses mathematical
techniques to simplify the analysis:

• It identifies portions of the model that do not affect the desired objectives.
• It discovers relationships within the model that reduce the complexity of the search.
• It reuses intermediate results from one objective to another.

In this way, the problem is reduced to a search though the logical values that describe
your model.

For detailed information about analyzing large models, see “Analyze a Large Model” on
page 14-3.

2-7



2 How the Simulink Design Verifier Software Works

Handle Incompatibilities with Automatic Stubbing

In this section...

“What Is Automatic Stubbing?” on page 2-8
“How Automatic Stubbing Works” on page 2-8
“Analyze a Model Using Automatic Stubbing” on page 2-10

What Is Automatic Stubbing?

Automatic stubbing lets you analyze a model that contains objects that Simulink Design
Verifier does not support.

When you enable the automatic stubbing option (it is enabled by default), the software
considers only the interface of the unsupported objects, not their actual behavior. This
technique allows the software to complete the analysis. However, the analysis may
achieve only partial results if any unsupported model element affects the simulation
outcome.

How Automatic Stubbing Works

If you enable automatic stubbing, when the Simulink Design Verifier analysis comes to
an unsupported block, the software “stubs” that block. The analysis ignores the behavior
of the block, and as a result, the block output can take any value.

Stub Trigonometric Function Block

The Simulink Design Verifier software does not support Trigonometric Function blocks
when the Function parameter is set to acos, such as the one in the following graphic.

When stubbing this block during analysis, out_signal can take any value, with the
following results.

2-8



 Handle Incompatibilities with Automatic Stubbing

Analysis Model Result of Stubbing out_signal

Design error detection • If a design-error objective that depends on out_signal
is proven valid, that objective is valid for all simulations.
In this case, the stubbing did not affect the results of the
analysis.

• If a design-error objective that depends on out_signal
is falsified, the analysis cannot create a test case. The
analysis cannot determine which input to the stubbed
block produces the output that falsifies the objective.

Test case generation • If a test objective that depends on the value of
out_signal is satisfied, the analysis cannot create a
test case. The analysis cannot determine which input to
the stubbed block produces the output that satisfies the
objective.

• If a test objective that depends on the value of
out_signal is unsatisfiable, there is no simulation that
can satisfy that objective. In this case, the stubbing did
not affect the results of the analysis.

Property proving • If a proof objective that depends on out_signal is
proven valid, that objective is valid for all simulations.
In this case, the stubbing did not affect the results of the
analysis.

• If a proof objective that depends on out_signal is
falsified, the analysis cannot create a counterexample.
The analysis cannot determine which input to the
stubbed block produces the output that falsifies the
objective.

Stub S-Function Block Containing Function-Call Triggers

The Simulink example model sfcndemo_sfun_fcncall has an S-Function block. The
S-function sfun_fcncall triggers the execution of the function-call subsystems f1
subsys1 and f2 subsys2 on the first and second elements of the first output port.

2-9



2 How the Simulink Design Verifier Software Works

If you do not enable support for an S-function in Simulink Design Verifier and automatic
stubbing is enabled, the analysis ignores the behavior of the S-function. As a result,
the code that triggers the two function-call subsystems is ignored, resulting in two
unsatisfiable objectives. Since the function calls are ignored, the contents of those
subsystems are effectively eliminated from the analysis.

To enable support for an S-function in Simulink Design Verifier, see “Support
Limitations for S-Functions” on page 3-36

Analyze a Model Using Automatic Stubbing

This section describes a workflow for using automatic stubbing, with a simple Simulink
model as an example.

• “Check Model Compatibility” on page 2-11
• “Turn On Automatic Stubbing” on page 2-13
• “Review Results” on page 2-14
• “Achieve Complete Results” on page 2-14

The following model contains a Discrete State-Space block, which is not compatible with
Simulink Design Verifier.

2-10



 Handle Incompatibilities with Automatic Stubbing

Check Model Compatibility

From the Simulink Editor, there are two ways to check whether a model is compatible
with Simulink Design Verifier:

• Run the Simulink Design Verifier compatibility check by selecting Analysis >
Design Verifier > Check Compatibility > Model.

2-11



2 How the Simulink Design Verifier Software Works

• Select the analysis that you want:

• Analysis > Design Verifier > Detect Design Errors > Model

• Analysis > Design Verifier > Generate Tests > Model
• Analysis > Design Verifier > Prove Properties > Model

2-12



 Handle Incompatibilities with Automatic Stubbing

The software first checks the compatibility of the model. If the model itself is
incompatible, for example, if it uses a variable-step solver, the analysis cannot
continue.

If it finds incompatible elements in the model, the software analyzes the model and,
by default, stubs out the incompatible elements. The Diagnostic Viewer also opens,
listing the incompatibilities.

Note: For more information, see “View Diagnostics” (Simulink).

Turn On Automatic Stubbing

Automatic stubbing is enabled by default. To change the automatic stubbing setting,
in the Configuration Parameters dialog box, on the main Design Verifier pane, select
Automatic stubbing of unsupported block and functions. When you run the
analysis, the software tells you that stubbing is turned on and the analysis continues.

2-13



2 How the Simulink Design Verifier Software Works

Review Results

If you run an analysis with automatic stubbing enabled, make sure to review the
results. In this report, generated after a test case generation analysis, you see a table of
unsupported blocks that the software encountered.

The generated analysis report for the example model shows that the objectives are
undecided because of stubbing. The software cannot generate test cases because it does
not understand the operation of the Discrete State-Space block.

Achieve Complete Results

If your analysis does not achieve complete results because of the stubbing, you can define
custom block replacements to give a more precise definition of the unsupported blocks.
For more information, see “Define Custom Block Replacements” on page 4-9 or
follow the steps in .

2-14



 Nonfinite Data

Nonfinite Data

The Simulink Design Verifier software does not support nonfinite data (for example, NaN
and Inf) and related operations.

During an analysis, the software handles nonfinite operations as follows:

• In the Relational Operator block:

• If the Relational operator parameter is isFinite, the output is always 1.
• If the Relational operator parameter is isNan or isInf, the output is always 0.

• In the MATLAB Function block:

• For the isFinite function, the output is always 1.
• For the isNan and isInf functions, the output is always 0.

2-15



2 How the Simulink Design Verifier Software Works

Approximations

In this section...

“Approximations During Model Analysis” on page 2-16
“Types of Approximations” on page 2-16
“Floating-Point to Rational Number Conversion” on page 2-17
“Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on
page 2-17
“Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-
Point Data Types” on page 2-18
“While Loops” on page 2-18

Approximations During Model Analysis

The Simulink Design Verifier software attempts to generate inputs and parameters
to achieve objectives. However, there could be an infinite number of values for the
software to search. To create reasonable limits on the analysis, the software performs
approximations to simplify the analysis. The software records any approximations it
performed in the Analysis Information chapter of the Simulink Design Verifier HTML
report. For a description of this chapter, see “Analysis Information Chapter” on page
13-28.

Review the analysis results carefully when the software uses approximations. Evaluate
your model to identify which blocks or subsystems caused the software to perform the
approximations.

Rarely, an approximation can result in test cases that fail to achieve test objectives
or demonstrate a design error, or counterexamples that fail to falsify proof objectives.
For example, suppose the software generates a test case signal that should achieve an
objective by exceeding a threshold; a floating-point round-off error might prevent that
signal from attaining the threshold value.

Types of Approximations

The Simulink Design Verifier software performs the following approximations when it
analyzes a model:

• “Floating-Point to Rational Number Conversion” on page 2-17

2-16



 Approximations

• “Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on
page 2-17

• “Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-
Point Data Types” on page 2-18

• “While Loops” on page 2-18

Floating-Point to Rational Number Conversion

The Simulink Design Verifier software simplifies the linear arithmetic of floating-point
numbers by approximating them with infinite-precision rational numbers. The software
discovers how the logical relationships between these values affects the objectives. This
analysis enables the software to support supervisory logic that is commonly found in
embedded controls designs.

If your model contains floating-point values in the signals, input values, or block
parameters, Simulink Design Verifier converts those values to rational numbers before
performing its analysis. As a result of these approximations:

• Round-off error is not considered.
• Upper and lower bounds of floating-point numbers are not considered.
• If your model casts floating-point values to integer values, the integer representation

can affect tests generated for the model. In some rare cases the generated tests may
not satisfy objectives associated with the floating-point values.

Linearization of Two-Dimensional Lookup Tables for Floating-Point Data
Types

The Simulink Design Verifier software does not support nonlinear arithmetic for
floating-point data types. If your model contains any 2-D Lookup Table blocks, or n-D
Lookup Table blocks where n = 2, with all of the following characteristics, the software
approximates nonlinear two-dimensional interpolation with linear interpolation by
fitting planes to each interpolation interval.

Block Characteristics

n-D Lookup Table block, n =
2:

• Interpolation method parameter is Linear.
• Extrapolation method parameter is Clip or Linear.
• The input and output signals both have the floating-

point data type.

2-17



2 How the Simulink Design Verifier Software Works

Approximation of One- and Two-Dimensional Lookup Tables for Integer
and Fixed-Point Data Types

If your model contains lookup tables of the following characteristics, Simulink Design
Verifier automatically converts your original lookup table into a new lookup table
composed of breakpoints that are evenly-spaced in each of their respective dimensions.

Block Characteristics

n-D Lookup Table block, n =
1 or n = 2:

• Interpolation method parameter is Linear.
• Extrapolation method parameter is Clip .
• Index search method parameter is Linear search

or Binary search.
• The input and output signals are both of the same type

and are both integer type or fixed-point type.

This approximation allows Simulink Design Verifier to generate tests significantly faster.
The time saved is pronounced when you have unsatisfiable test objectives in your model.

If Simulink Design Verifier applies such approximations to your model, the Simulink
Design Verifier report includes details of the approximation.

While Loops

If your model or a Stateflow chart in your model contains a while loop, Simulink
Design Verifier tries to detect a conservative constant bound that allows the while
loop to exit. If the software cannot find a constant bound, it performs a while loop
approximation. With this approximation, the analysis does not prove objectives to be
valid or unsatisfiable and it does not prove dead logic. The generated analysis report
notes this approximation.

The behavior of the while loop approximation is consistent in all modes of analysis, as
described in the following table.

Analysis Mode While Loop Approximation

Design Error Detection Sets number of while loop iterations
to 3. Does not report dead logic or valid
objectives.

2-18



 Approximations

Analysis Mode While Loop Approximation

Test Case Generation Sets number of while loop iterations to 3.
Does not report unsatisfiable objectives.

Property Proving Sets number of while loop iterations to 3.
Does not report valid objectives.

2-19



2 How the Simulink Design Verifier Software Works

Logic Operations Short-Circuiting

Simulink Design Verifier can consider logic blocks as short-circuiting during
analysis, depending on the value you set for the Simulink Verification and Validation
CovLogicBlockShortCircuit “Model Parameters” (Simulink).

If CovLogicBlockShortCircuit is 'on', Simulink Design Verifier short-circuits logic
blocks during analysis. In this case, when a previous input alone determines the block
output, the analysis ignores any remaining block inputs. For example, if the first input to
a Logical Operator block whose Operator parameter specifies AND is false, the analysis
ignores the values of the other inputs.

Consider the following example model, with the Model coverage objectives parameter
set to Condition Decision.

When Simulink Design Verifier analyzes this model for Condition Decision coverage, the
analysis can only satisfy five of six objectives for the Logical Operator block inputs. The
software cannot generate a test case when the third input to the Logical Operator block
is false. If the second input is false, the third input is false, but the software ignores the
third input due to the short-circuiting. If the second input is true, the third input is never
false.

2-20



3

Checking Compatibility with the
Simulink Design Verifier Software

• “Check Model Compatibility” on page 3-2
• “Supported and Unsupported Simulink Blocks in Simulink Design Verifier” on page

3-10
• “Support Limitations for Simulink Software Features” on page 3-22
• “Support Limitations for Model Blocks” on page 3-25
• “Support Limitations for Stateflow Software Features” on page 3-27
• “Support Limitations for MATLAB for Code Generation” on page 3-31
• “Support Limitations for S-Functions” on page 3-36



3 Checking Compatibility with the Simulink Design Verifier Software

Check Model Compatibility

In this section...

“Compatibility with Simulink Design Verifier” on page 3-2
“Run Compatibility Check” on page 3-2
“Compatibility Check Results” on page 3-3

Compatibility with Simulink Design Verifier

The Simulink Design Verifier software analyzes Simulink models to:

• Detect design errors that can occur at run time.
• Generate test cases that achieve model coverage.
• Prove properties and identify property violations.

For these analyses, the models must:

• Compile into an executable form.
• Be compatible with code generation.
• Perform a zero-second simulation with no errors, where the simulation start time and

stop time are 0.

The software supports a broad range of Simulink and Stateflow software features in
your models. However, there are features that the product does not support, described
in “Support Limitations for Simulink Software Features” on page 3-22 and “Support
Limitations for Stateflow Software Features” on page 3-27. Avoid using unsupported
features in models that you plan to analyze with Simulink Design Verifier.

Run Compatibility Check

Before the software begins an analysis, it automatically checks the compatibility of your
model.

Before you start an analysis, you can run a compatibility check on your model. To run a
compatibility check on your model, do one of the following:

3-2



 Check Model Compatibility

• From the Simulink Editor, select Analysis > Design Verifier > Check
Compatibility > Model.

• In the Model Advisor, select either By Product > Simulink Design Verifier >
Check compatibility with Simulink Design Verifier or By Task > Simulink
Design Verifier Compatibility Check > Check compatibility with Simulink
Design Verifier. Click Run This Check.

For more information, see “Simulink Design Verifier Checks”.
• Use the sldvcompat function to run the compatibility checker programmatically

at the command line or in a MATLAB program. For more information, see the
sldvcompat reference page.

Compatibility Check Results

There are three outcomes of a compatibility check:

• “Model Is Compatible” on page 3-3
• “Model Is Incompatible” on page 3-5
• “Model Is Partially Compatible” on page 3-7

Model Is Compatible

In the Results Summary window, you see if your model is compatible with the software.

3-3



3 Checking Compatibility with the Simulink Design Verifier Software

If your model is compatible, you can continue with the analysis from the Results
Summary window.

Note:  If you make changes to the model after the compatibility check completes, you
cannot continue the analysis from the results summary.

3-4



 Check Model Compatibility

Model Is Incompatible

If the model itself is incompatible with the software, two dialog boxes open:

• Simulink Design Verifier Results Summary

• Diagnostic Viewer. Use the information in this dialog box to identify and fix the
incompatibility.

• If your model uses a variable-step solver, configure the solver options to a fixed
step.

3-5



3 Checking Compatibility with the Simulink Design Verifier Software

• If your model has nonfinite data, change the value of the data or configure the
model so that the data is treated as a variable during Simulink Design Verifier
analysis.

3-6



 Check Model Compatibility

Note: For more information about the Diagnostic Viewer, see “View Diagnostics”
(Simulink).

If your model is large and contains many subsystems, you can use the Test Generation
Advisor to determine whether certain subsystems cause the incompatibility. For more
information, see “Use Test Generation Advisor to Identify Analyzable Components” on
page 7-21.

Model Is Partially Compatible

A model is partially compatible if at least one object in the model is incompatible.
Automatic stubbing is enabled by default. If you start an analysis that determines that
the model is partially incompatible, you see the following message, but the analysis
proceeds.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out

during analysis. The results of the analysis might be

incomplete.

3-7



3 Checking Compatibility with the Simulink Design Verifier Software

If you have disabled automatic stubbing, the analysis stops. The Results Summary
window appears as follows.

To turn on automatic stubbing:

1 In the Simulink Editor, select Analysis > Design Verifier > Options.
2 Under Analysis options, select Automatic stubbing of unsupported blocks

and functions.

3-8



 Check Model Compatibility

For more information, see “Handle Incompatibilities with Automatic Stubbing” on page
2-8.

If your model is large or complex, you can use the Test Generation Advisor to determine
whether certain subsystems cause the incompatibility. For more information, see “Use
Test Generation Advisor to Identify Analyzable Components” on page 7-21.

3-9



3 Checking Compatibility with the Simulink Design Verifier Software

Supported and Unsupported Simulink Blocks in Simulink Design
Verifier

Simulink Design Verifier provides various levels of support for Simulink blocks:

• Fully supported
• Partially supported
• Not supported

If your model contains unsupported blocks, you can enable automatic stubbing.
Automatic stubbing considers the interface of the unsupported blocks, but not their
behavior. If any of the unsupported blocks affect the simulation outcome, however, the
analysis may achieve only partial results. For details about automatic stubbing, see
“Handle Incompatibilities with Automatic Stubbing” on page 2-8.

To achieve 100% coverage, avoid using unsupported blocks in models that you analyze.
Similarly, for partially supported blocks, specify only the block parameters that Simulink
Design Verifier recognizes.

The following tables summarize Simulink Design Verifier analysis support for
Simulink blocks. Each table lists the blocks in a Simulink library and describes support
information for that particular block.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries. Those blocks are
listed under their respective libraries.

Continuous Library

Block Support Notes

Derivative Not supported
Integrator Not supported and not stubbable
Integrator Limited (Simulink) Not supported and not stubbable
PID Controller Not supported
PID Controller (2 DOF) Not supported

3-10



 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes

Second Order Integrator (Simulink) Not supported and not stubbable
Second Order Integrator Limited Not supported and not stubbable
State-Space Not supported and not stubbable
Transfer Fcn Not supported and not stubbable
Transport Delay Not supported
Variable Time Delay Not supported
Variable Transport Delay Not supported
Zero-Pole Not supported and not stubbable

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block Support Notes

Delay Supported
Difference Supported
Discrete Derivative Supported
Discrete Filter Supported
Discrete FIR Filter Supported
Discrete PID Controller (Simulink) Supported
Discrete PID Controller (2 DOF)
(Simulink)

Supported

Discrete State-Space Not supported
Discrete Transfer Fcn Supported
Discrete Zero-Pole Not supported
Discrete-Time Integrator Supported
First-Order Hold Supported
Memory Supported
Tapped Delay Supported

3-11



3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes

Transfer Fcn First Order Supported
Transfer Fcn Lead or Lag Supported
Transfer Fcn Real Zero Supported
Unit Delay Supported
Zero-Order Hold Supported

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes

Cosine Supported
Direct Lookup Table (n-D) Supported
Interpolation Using Prelookup Not supported when:

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
4.

or

• The Interpolation method parameter is Linear and the
Number of sub-table selection dimensions parameter
is not 0.

1-D Lookup Table Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

n-D Lookup Table Not supported when:

• The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or

3-12



 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
5.

Lookup Table Dynamic Supported
Prelookup Supported
Sine (Simulink) Supported

Math Operations Library

Block Support Notes

Abs Supported
Add Supported
Algebraic Constraint Supported
Assignment Supported
Bias Supported
Complex to Magnitude-Angle Not supported
Complex to Real-Imag Supported
Divide Supported
Dot Product Supported
Find Nonzero Elements (Simulink) Supported
Gain Supported
Magnitude-Angle to Complex Supported
Math Function All signal types support the following Function

parameter settings.

conj hermitian magnitude^2 mod

rem reciprocal square transpose

The software does not support the following Function
parameter settings.

10^u exp hypot

3-13



3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes

log log10 pow

Matrix Concatenate (Simulink) Supported
MinMax Supported
MinMax Running Resettable Supported
Permute Dimensions Supported
Polynomial Supported
Product Supported
Product of Elements Supported
Real-Imag to Complex Supported
Reciprocal Sqrt Not supported
Reshape Supported
Rounding Function Supported
Sign Supported
Signed Sqrt Not supported
Sine Wave Function Not supported
Slider Gain Supported
Sqrt Supported
Squeeze Supported
Subtract Supported
Sum Supported
Sum of Elements Supported
Trigonometric Function Supported if Function is sin, cos, or sincos, and

Approximation method is CORDIC.
Unary Minus Supported
Vector Concatenate (Simulink) Supported
Weighted Sample Time Math Supported

3-14



 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Model Verification Library

The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes

Block Support Table Supported
DocBlock Supported
Model Info Supported
Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes

Atomic Subsystem Supported
Code Reuse Subsystem Supported
Configurable Subsystem Supported
Enable Supported
Enabled Subsystem Design range checks do not consider specified minimum

and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values” on page 6-31.

Simulink Design Verifier treats Enabled Subsystems as
short-circuited during test generation.

Enabled and Triggered Subsystem Not supported when the trigger control signal specifies a
fixed-point data type.

Design range checks do not consider specified minimum
and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values” on page 6-31.

3-15



3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes

Simulink Design Verifier treats Enabled and Triggered
Subsystems as short-circuited during test generation.

For Each Supported with the following limitations:

• When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition, Test
Objective, Proof Assumption, or Proof Objective blocks,
not supported.

• When the mask parameters of the For Each Subsystem
are partitioned, not supported.

For Each Subsystem Supported with the following limitations:

• When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition, Test
Objective, Proof Assumption, or Proof Objective blocks,
not supported.

• When the mask parameters of the For Each Subsystem
are partitioned, not supported.

For Iterator Subsystem Supported
Function-Call Feedback Latch Supported
Function-Call Generator Supported
Function-Call Split Supported
Function-Call Subsystem Design range checks do not consider specified minimum

and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values” on page 6-31.

Not supported when the Function-Call Subsystem is
invoked using function-call triggers passed via root-level
Inport blocks. For more information see, “Export-Function
Models” (Simulink).

If Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for an If
block.

3-16



 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes

If Action Subsystem Supported
In Bus Element Supported
Inport Supported
Model Supported except for the limitations described in “Support

Limitations for Model Blocks” on page 3-25.
Model Variants Supported except for the limitations described in “Support

Limitations for Model Blocks” on page 3-25.
Out Bus Element Supported
Outport Supported
Resettable Subsystem Supported
Subsystem Supported
Switch Case Supported
Switch Case Action Subsystem Supported
Trigger Supported
Triggered Subsystem Not supported when the trigger control signal specifies a

fixed-point data type.

Design range checks do not consider specified minimum
and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values” on page 6-31.

Simulink Design Verifier treats Enabled Subsystems as
short-circuited during test generation.

Variant Subsystem Not supported when the Generate preprocessor
conditionals parameter is enabled.

Only the active variant is analyzed.
While Iterator Subsystem Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

3-17



3 Checking Compatibility with the Simulink Design Verifier Software

Signal Routing Library

Block Support Notes

Bus Assignment Supported
Bus Creator Supported
Bus Selector Supported
Data Store Memory Supported
Data Store Read Supported
Data Store Write Supported
Demux Supported
Environment Controller Supported
From Supported
Goto Supported
Goto Tag Visibility Supported
Index Vector Supported
Manual Switch The Manual Switch block is compatible with the software,

but the analysis ignores this block in a model. The
analysis does not flag the coverage objectives for this block
as satisfiable or unsatisfiable.

Model coverage data is collected for the Manual Switch
block.

Merge Supported
Multiport Switch Supported
Mux Supported
Selector Supported
Switch Supported
Vector Concatenate Supported

Sinks Library

Block Support Notes

Display Supported

3-18



 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes

Floating Scope Supported
Outport (Out1) Supported
Scope Supported
Stop Simulation Not supported and not stubbable
Terminator Supported
To File Supported
To Workspace Supported
XY Graph Supported

Sources Library

Block Support Notes

Band-Limited White Noise Not supported
Chirp Signal Not supported
Clock Supported
Constant Supported unless Constant value is inf.
Counter Free-Running Supported
Counter Limited Supported
Digital Clock Supported
Enumerated Constant Supported
From File Not supported. When MAT-file data is stored in MATLAB

timeseries format, not stubbable.
From Workspace Not supported
Ground Supported
Inport (In1) Supported
Pulse Generator Supported
Ramp Supported
Random Number Not supported and not stubbable
Repeating Sequence Not supported

3-19



3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes

Repeating Sequence Interpolated Not supported
Repeating Sequence Stair Supported
Signal Builder Not supported
Signal Generator Not supported
Sine Wave Not supported
Step Supported
Uniform Random Number Not supported and not stubbable

User-Defined Functions Library

Block Support Notes

Fcn Supports all operators except ^, and supports only the
mathematical functions abs, ceil, fabs, floor, rem, and
sgn.

Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for these
blocks.

Test generation is not supported for relational boundary
coverage.

Interpreted MATLAB Function Not supported
Level-2 MATLAB S-Function For limitations, see “Support Limitations for S-Functions”

on page 3-36.
MATLAB Function For limitations, see “Support Limitations for MATLAB for

Code Generation” on page 3-31.
S-Function For limitations, see “Support Limitations for S-Functions”

on page 3-36.
S-Function Builder For limitations, see “Support Limitations for S-Functions”

on page 3-36.
Simulink Function Simulink Function blocks with output arguments that are

of bus data-type are not supported.

3-20



 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes

Calls to Simulink Functions across model boundaries are
not supported.

3-21



3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations for Simulink Software Features

Simulink Design Verifier does not support the following Simulink software features.
Avoid using these unsupported features.

Not Supported Description

Variable-step solvers The software supports only fixed-step solvers.

For more information, see “Choose a Fixed-Step Solver”
(Simulink).

Callback functions The software does not execute model callback functions
during the analysis. The results that the analysis generates,
such as the harness model, may behave inconsistently with
the expected behavior.

• If a model or any referenced model calls a callback
function that changes any block parameters, model
parameters, or workspace variables, the analysis does not
reflect those changes.

• Changing the storage class of base workspace variables
on model callback functions or mask initializations is not
supported.

• Callback functions called prior to analysis, such as the
PreLoadFcn or PostLoadFcn model callbacks, are fully
supported.

Model callback functions The software only supports model callback functions if the
InitFcn callback of the model is empty.

Algebraic loops The software does not support models that contain algebraic
loops.

For more information, see “Algebraic Loops” (Simulink).
Masked subsystem
initialization functions

The software does not support models whose masked
subsystem initialization modifies any attribute of any
workspace parameter.

Complex signals The software supports only real signals.

For more information, see “Complex Signals” (Simulink).

3-22



 Support Limitations for Simulink Software Features

Not Supported Description

Variable-size signals The software does not support variable-size signals. A
variable-size signal is a signal whose size (number of
elements in a dimension), in addition to its values, can
change during model execution.

For more information, see “Variable-Size Signal Basics”
(Simulink).

Multiword fixed-point
data types

The software does not support multiword fixed-point data
types.

Nonzero start times Although Simulink allows you to specify a nonzero
simulation start time, the analysis generates signal data that
begins only at zero. If your model specifies a nonzero start
time:

• If you do not select the Reference input model in
generated harness parameter (the default), the harness
model is a subsystem. The analysis sets the start time of
the harness model to 1 and continues the analysis.

• If you select the Reference input model in generated
harness parameter, a Model block references the harness
model. The software cannot change the start time of
the harness model, so the analysis stops and you see a
recommendation to set the Start time parameter to 0.

3-23



3 Checking Compatibility with the Simulink Design Verifier Software

Not Supported Description

Nonfinite data The software does not support nonfinite data (for example,
NaN and Inf) and related operations.

In the Relational Operator block, the software assigns the
output as follows:

• If the Relational operator parameter is isFinite, the
output is always 1.

• If the Relational operator parameter is isNan or
isInf, the output is always 0.

In the MATLAB Function block, the software assigns the
return value as follows:

• For the isFinite function, the output is always 1.
• For the isNan and isInf functions, the output is always

0.
Concurrent execution The software does not support models that are configured for

concurrent execution.
Signals with nonzero
sample time offset

The software does not support models with signals that have
nonzero sample time offsets.

Models with no output
ports

The software only supports models that have one or more
output ports.

Large floating-point
constants outside the
range [-realmax/2,
realmax/2]

The use of large floating-point constants can cause out of
memory errors or substantial loss of precision. Avoid using
such constants if possible.

Symbolic Dimensions The software does not support symbolic dimensions for test
generation, property proving, or design error detection.

3-24



 Support Limitations for Model Blocks

Support Limitations for Model Blocks

Simulink Design Verifier supports the Model block with the following limitations. The
software cannot analyze a model containing one or more Model blocks if:

• The referenced model is protected. Protected referenced models are encoded to
obscure their contents. This allows third parties to use the referenced model without
being able to view the intellectual property that makes up the model.

For more information, see “Protected Model” (Simulink).
• The parent model or any of the referenced models returns an error when you set the

Configuration Parameters > Diagnostics > Connectivity > Element name
mismatch parameter to error.

You can use the Element name mismatch diagnostic along with bus objects so that
your model meets the bus element naming requirements imposed by some blocks.

• The Model block uses asynchronous function-call inputs.
• Any of the Model blocks in the model reference hierarchy creates an artificial

algebraic loop. If this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box, set the
Minimize algebraic loop parameter to error so that Simulink reports an
algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters dialog box,
select the Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.
4 If Simulink cannot eliminate the artificial algebraic loop, highlight the location of

the algebraic loop by selecting Simulation > Update Diagram.
5 Eliminate the artificial algebraic loop so that the software can analyze the model.

Break the loop with Unit Delay blocks so that the execution order is predictable.

Note: For more information, see “Algebraic Loops” (Simulink).

• The parent model uses the base workspace and the referenced model uses a data
dictionary.

3-25



3 Checking Compatibility with the Simulink Design Verifier Software

• The parent model and the referenced model have mismatched data type override
settings. The data type override setting of the parent model and its referenced models
must be the same, unless the data type override setting of the parent model is Use
local settings. You can select the data type override settings for your model
in the Analysis menu, in the Fixed Point Tool dialog box under the Settings for
selected system pane.

• The referenced model is a Model Reference block with virtual bus inports, and the
signals in the bus do not all have the same sample time at compilation. To make
the model compatible with Simulink Design Verifier analysis, convert the port to a
nonvirtual bus, or specify an explicit sample time for the port.

3-26



 Support Limitations for Stateflow Software Features

Support Limitations for Stateflow Software Features

Simulink Design Verifier does not support the following Stateflow software features.
Avoid using these unsupported features in models that you analyze.

In this section...

“ml Namespace Operator, ml Function, ml Expressions” on page 3-27
“C Math Functions” on page 3-27
“Atomic Subcharts That Call Exported Graphical Functions Outside a Subchart” on
page 3-28
“Atomic Subchart Input and Output Mapping” on page 3-28
“Recursion and Cyclic Behavior” on page 3-28
“Custom C or C++ Code” on page 3-30
“Machine-Parented Data” on page 3-30
“Textual Functions with Literal String Arguments” on page 3-30

ml Namespace Operator, ml Function, ml Expressions

The software does not support calls to MATLAB functions or access to MATLAB
workspace variables, which the Stateflow software allows. (See “Access Built-In
MATLAB Functions and Workspace Data” (Stateflow) in the Stateflow documentation.)

C Math Functions

The software supports calls to the following C math functions:

• abs

• ceil

• fabs

• floor

• fmod

• labs

• ldexp

• pow (only for integer exponents)

3-27



3 Checking Compatibility with the Simulink Design Verifier Software

The software does not support calls to other C math functions, which the Stateflow
software allows. If automatic stubbing is enabled, which it is by default, the software
eliminates these unsupported functions during the analysis.

For information about C math functions in Stateflow, see “Call C Functions in C Charts”
(Stateflow) in the Stateflow documentation.

Note: For details about automatic stubbing, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.

Atomic Subcharts That Call Exported Graphical Functions Outside a
Subchart

The software does not support atomic subcharts that call exported graphical functions,
which the Stateflow software allows.

Note: For information about exported functions, see “Export Stateflow Functions for
Reuse” (Stateflow) in the Stateflow documentation.

Atomic Subchart Input and Output Mapping

If an input or output in an atomic subchart maps to chart-level data of a different scope,
the software does not support the chart that contains that atomic subchart.

For an atomic subchart input, this incompatibility applies when the input maps to chart-
level data of output, local, or parameter scope. For an atomic subchart output, this
incompatibility applies when the output maps to chart-level data of local scope.

Recursion and Cyclic Behavior

The software does not support recursive functions, which occur when a function calls
itself directly or indirectly through another function call. Stateflow software allows you to
implement recursion using graphical functions.

In addition, the software does not support recursion that the Stateflow software allows
you to implement using a combination of event broadcasts and function calls.

3-28



 Support Limitations for Stateflow Software Features

Note: For information about avoiding recursion in Stateflow charts, see “Guidelines for
Avoiding Unwanted Recursion in a Chart” (Stateflow) in the Stateflow documentation.

Stateflow software also allows you to create cyclic behavior, where a sequence of steps is
repeated indefinitely. If your model has a chart with cyclic behavior, the software cannot
analyze it.

Note: For information about cyclic behavior in Stateflow charts, see “Cyclic Behavior in a
Chart” (Stateflow) in the Stateflow documentation.

However, you can modify a chart with cyclic behavior so that it is compatible, as in the
following example.

The following chart creates cyclic behavior. State A calls state A1, which broadcasts a
Clear event to state B, which calls state B2, which broadcasts a Set event back to state
A, causing the cyclic behavior.

If you change the send function calls to use directed event broadcasts so that the Set
and Clear events are broadcast directly to the states B1 and A1, respectively, the cyclic
behavior disappears and the software can analyze the model.

3-29



3 Checking Compatibility with the Simulink Design Verifier Software

Note: For information about the benefits of directed event broadcasts, see “Broadcast
Events to Synchronize States” (Stateflow) in the Stateflow documentation.

Custom C or C++ Code

The software does not support custom C or C++ code, which the Stateflow software
allows.

Machine-Parented Data

The software does not support machine-parented data (i.e., defined at the level of the
Stateflow machine), which the Stateflow software allows.

For more information, see “Best Practices for Using Data in Charts” (Stateflow) in the
Stateflow documentation.

Textual Functions with Literal String Arguments

The software does not support literal string arguments to textual functions in a Stateflow
chart.

3-30



 Support Limitations for MATLAB for Code Generation

Support Limitations for MATLAB for Code Generation

In this section...

“Unsupported MATLAB for Code Generation Features” on page 3-31
“Support Limitations for MATLAB for Code Generation Library Functions” on page
3-31

Unsupported MATLAB for Code Generation Features

Simulink Design Verifier does not support the following features of the MATLAB
Function block in the Simulink software and MATLAB functions in the Stateflow
software. Avoid using these unsupported features in models that you analyze with
Simulink Design Verifier.

Not Supported Description

Complex numbers The software supports only real numbers and cannot
analyze MATLAB for code generation functions that use
complex numbers.

Characters The software does not support characters, which
MATLAB for code generation allows.

C functions The software does not support calls to external C
functions, which MATLAB for code generation allows.

Extrinsic functions The software supports extrinsic functions only when
they do not affect the output of a MATLAB function.

Handle classes The software does not support handle classes in the
MATLAB Function block. The software does support
value classes.

Support Limitations for MATLAB for Code Generation Library Functions

Simulink Design Verifier provides various levels of support for MATLAB for code
generation library functions. The software either fully or partially supports particular
functions. It does not support other functions.

If your model contains unsupported functions, you can turn on automatic stubbing, which
considers the interface of the unsupported functions, but not their behavior. However, if
any of the unsupported functions affect the simulation outcome, the analysis may achieve

3-31



3 Checking Compatibility with the Simulink Design Verifier Software

only partial results. For details about automatic stubbing, see “Handle Incompatibilities
with Automatic Stubbing” on page 2-8.

To achieve 100% coverage, avoid using unsupported MATLAB library functions in models
that you analyze.

The following table lists Simulink Design Verifier support for categories of library
functions in code generation from MATLAB:

• Software supports functions in that category, indicated by a dash (—).
• Software does not support functions in that category.
• Software supports the function in that category with limitations as specified.

For the complete listing of available functions, see “Functions and Objects Supported for
C/C++ Code Generation — Alphabetical List” (Simulink).

Function Category Support Notes

Aerospace Toolbox functions Not supported.
Arithmetic operator functions Supported with the following limitations:
  mldivide (\) Supports only scalar arguments.
  mpower (^) Supports only integer exponents.
  mrdivide (/) Supports only scalar arguments.
  power (.^) Supports only integer exponents.
Bit-wise operation functions —
Casting functions Supported with the following limitations:
  char Not supported.
  typecast Not supported.
Communications System Toolbox™ functions Not supported.
Complex number functions Not supported.
Computer Vision System Toolbox™ functions Not supported.
Data type functions —
Derivative and Integral functions Not supported.
Discrete math functions —
Error handling functions Supported with the following limitations:

3-32



 Support Limitations for MATLAB for Code Generation

Function Category Support Notes

  assert Supported, but does not behave
like a Proof Objective block.

Exponential functions Supported with the following limitations:
  exp Not supported.
  expm Not supported.
  expm1 Not supported.
  log Not supported.
  log2 Not supported.
  log10 Not supported.
  log1p Not supported.
  nextpow2 Not supported.
  nthroot Not supported.
  reallog Not supported.
  realpow Not supported.
  realsqrt Not supported.
  sqrt Not supported.
Filtering and convolution functions Supported with the following limitations:
  detrend Not supported.
Fixed-Point Designer functions Supported with the following limitations:
  complex Not supported.
Histogram functions Not supported.
Image Processing Toolbox™ functions Not supported.
Input and output functions —
Interpolation and computation geometry Supported with the following limitations:
  cart2pol Not supported.
  cart2sph Not supported.
  pol2cart Not supported.
  sph2cart Not supported.

3-33



3 Checking Compatibility with the Simulink Design Verifier Software

Function Category Support Notes

Linear algebra Not supported.
Logical operator functions —
MATLAB Compiler™ functions Not supported.
Matrix and array functions Supported with the following limitations:
  angle Not supported.
  cond Not supported.
  det Not supported.
  eig Not supported.
  inv Not supported.
  invhilb Not supported.
  logspace Not supported.
  lu Not supported.
  norm Supported only when invoked

using the syntax

norm(A,p)

where p is either 1 or inf.
  normest Not supported.
  pinv Not supported.
  planerot Not supported.
  qr Not supported.
  rank Not supported.
  rcond Not supported.
  subspace Not supported.
Nonlinear numerical methods Not supported.
Polynomial functions Not supported.
Relational operations functions —
Rounding and remainder functions —

3-34



 Support Limitations for MATLAB for Code Generation

Function Category Support Notes

Set functions —
Signal Processing functions in MATLAB Not supported.
Signal Processing Toolbox™ functions Not supported.
Special values Supported with the following limitations:
  rand Not supported.
  randn Not supported.
Specialized math Not supported.
Statistical functions —
String functions Supported with the following limitations:
  char Not supported.
  ischar Not supported.
Trigonometric functions Not supported.

3-35



3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations for S-Functions

In this section...

“Enabling S-Functions in Simulink Design Verifier” on page 3-36
“Support Limitations for S-Function Code” on page 3-36
“Considerations for Enabling S-Functions in Simulink Design Verifier” on page 3-37
“Source code protection” on page 3-37

Enabling S-Functions in Simulink Design Verifier

Simulink Design Verifier supports model verification, test case generation, and property
proving for S-Functions that:

• The Legacy Code Tool generates, with
def.Options.supportCoverageAndDesignVerifier set to true.

• The S-Function Builder (Simulink) generates, with Enable support for Design
Verifier selected on the Build Info tab of the S-Function Builder dialog box.

• The function slcovmex compiles, with the option -sldv passed to the function when
compiling the S-function.

For more information on the three approaches, see “Creating C MEX S-Functions”
(Simulink)

Support Limitations for S-Function Code

• Simulink Design Verifier does not support S-Functions containing these types of code:

• S-Functions containing continuous states. Simulink Design Verifier does not
analyze such S-Functions.

• S-Functions containing zero-crossing functions. Simulink Design Verifier ignores
such S-Functions during analysis.

• S-Functions containing constants that describe INF or NaN objects. Simulink
Design Verifier considers such S-Functions as containing floating-point overflow
errors. Although Simulink Design Verifier analysis cannot determine the type
of overflow error for such cases, the analysis can determine which lines of code

3-36



 Support Limitations for S-Functions

introduce the incompatibility. Polyspace can provide more information on why the
code in your S-Functions contains floating-point overflow errors.

• You must specify that the signal elements entering the ports of S-Functions
compiled with slcovmex must be contiguous. Use the SimStruct function
ssSetInputPortRequiredContiguous (Simulink).

Considerations for Enabling S-Functions in Simulink Design Verifier

• When analyzing models with enabled S-Functions, Design Verifier assumes that the
S-Functions contain no run-time errors. In the case where an enabled S-function
contains run-time errors (division by zero, access to noninitialized variables, array
out of bounds, and so on), the analysis can produce incorrect results. S-Functions
that Polyspace proves to be free of run-time errors provide correct results in Design
Verifier analysis.

• If Design Verifier cannot determine the size of arrays (for instance for arrays that
are dynamically allocated with nonconstant size), Design Verifier assumes an upper
bound for the array. Ensure that the given upper bound is appropriate.

• If you do not enable Design Verifier support for an S-function, Design Verifier stubs
the S-function. With S-function support enabled, Design Verifier analyzed the content
of the S-function to get more detailed information. In some cases, Design Verifier
internally stubs the S-function. Internal stubs can be the result of different C/C++
constructs, such as:

• Calls to library functions (the library function will be replaced by a stub).
• Complex pointer operations.
• Casts to or from incompatible or unknown pointer types.

Models containing such constructs are labeled Partially compatible.

Source code protection

To analyze the contents of an S-function, information about the implementation of the
S-function, including information derived from the source code, are stored within the
shared object. Although this information is not directly accessible to users, consider
disabling Design Verifier support for S-Functions in models that are released externally
if the S-Functions contain sensitive source code.

See Also

3-37





4

Working with Block Replacements

• “What Is Block Replacement?” on page 4-2
• “Built-In Block Replacements” on page 4-6
• “Template for Block Replacement Rules” on page 4-8
• “Define Custom Block Replacements” on page 4-9
• “Execute Block Replacements” on page 4-17



4 Working with Block Replacements

What Is Block Replacement?

Using Simulink Design Verifier, you can define rules to replace blocks automatically
in your model. For example, you can work around a block that is incompatible with the
software by creating a rule that replaces an unsupported Simulink block in your model
with a supported block that is functionally equivalent. Or, you can customize blocks for
analysis by creating a rule that adds constraints or objectives to particular blocks in your
model.

When performing block replacements, the software makes a copy of your model and
replaces blocks in the copy, without altering your original model. In this way, you can
easily customize a model for analysis.

The Simulink Design Verifier software replaces blocks automatically in a model using:

• Libraries of replacement blocks
• Rules that define which blocks to replace and under what conditions

You replace any block with any built-in block, library block, or subsystem.

Block replacements are extensible, allowing you to define your own libraries of
replacement blocks and custom block replacement rules. Using block replacements, you
can

• Work around an incompatibility, such as the presence of unsupported blocks in your
model.

• Customize a block for analysis, such as:

• Adding constraints to its input signals
• Adding objectives to its output signals
• Eliminating the contents of a subsystem or Model block to simplify your analysis

Note: You can use automatic stubbing as an alternative to block replacements to resolve
incompatibilities. Automatic stubbing replaces unsupported blocks with elements that
have the same interface. For more information, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.

4-2



 What Is Block Replacement?

Block Replacement Effects on Test Generation

Replacing blocks can affect test case generation if the replaced blocks share functionality
with other parts of your model. Before you replace blocks, understand functional
dependencies on those blocks or on shared signals. See “Highlight Functional
Dependencies” on page 16-2. Replacement blocks can also affect other analysis
workflows such as property proving.

For example, you can customize a block for analysis using a replacement block that
adds objectives to an input signal. If another subsystem depends on that signal, the
replacement block effectively adds an objective for the subsystem.

In this example, the breakpoint range of u1 in the 2-D Lookup Table is 5–7. The switch
threshold 8 falls outside the u1 lookup table range.

Tests generated without replacing the 2D Lookup Table satisfy two objectives: that the
trigger is not greater than the Switch block threshold 8, and that the trigger is greater
than the Switch block threshold 8.

4-3



4 Working with Block Replacements

Test generation with block replacement returns a different analysis. The
blkrep_rule_lookup2D_normal.m block replacement rule replaces the 2D Lookup
Table with a masked subsystem containing the 2D Lookup Table and a verification
subsystem.

The verification subsystem constrains the analysis within the breakpoint bounds
of the table. The additional constraints prevent generating tests that exercise the
second objective for the Switch block. The condition that the input signal In1 > 8 is
unsatisfiable.

4-4



 What Is Block Replacement?

4-5



4 Working with Block Replacements

Built-In Block Replacements

The Simulink Design Verifier software provides a set of block replacement rules and a
corresponding library of replacement blocks. Use these built-in block replacements when
analyzing models. They serve as examples that you can examine to learn how to create
your own block replacements.

The following table lists the factory default block replacement rules, available in the
matlabroot\toolbox\sldv\sldv\private folder. There are two implementations of
each factory-default block replacement rule. Rules whose file names end with _normal.m
replace blocks with Subsystem blocks. Rules whose file names end with _configss.m
replace blocks with Configurable Subsystem blocks.

File Name Description

blkrep_rule_lookup_normal.m

blkrep_rule_lookup_configss.m

A rule that replaces 1-D Lookup Table blocks with
an implementation that includes test objectives
for each breakpoint and interval specified by the
Breakpoints parameter.

blkrep_rule_lookup2D_normal.m

blkrep_rule_lookup2D_configss.m

A rule that adds Test Condition/Proof Assumption
blocks to the input ports of 2-D Lookup Table
blocks. Each Test Condition/Proof Assumption
block constrains signal values to the interval
specified by the corresponding breakpoint vector.

blkrep_rule_mpswitch2_normal.m

blkrep_rule_mpswitch2_configss.m

A rule that adds a Test Condition/Proof Assumption
block to the control input port of Multiport Switch
blocks whose Number of data ports parameter
is 2. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 2] (or [0,
1] if the block uses zero-based indexing).

blkrep_rule_mpswitch3_normal.m

blkrep_rule_mpswitch3_configss.m

A rule that adds a Test Condition/Proof Assumption
block to the control input port of Multiport Switch
blocks whose Number of data ports parameter
is 3. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 3] (or [0,
2] if the block uses zero-based indexing).

blkrep_rule_mpswitch4_normal.m

blkrep_rule_mpswitch4_configss.m

A rule that adds a Test Condition/Proof Assumption
block to the control input port of Multiport Switch
blocks whose Number of data ports parameter

4-6



 Built-In Block Replacements

File Name Description

is 4. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 4] (or [0,
3] if the block uses zero-based indexing).

blkrep_rule_mpswitch5_normal.m

blkrep_rule_mpswitch5_configss.m

A rule that adds a Test Condition/Proof Assumption
block to the control input port of Multiport Switch
blocks whose Number of data ports parameter
is 5. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 5] (or [0,
4] if the block uses zero-based indexing).

blkrep_rule_switch_normal.m

blkrep_rule_switch_configss.m

A rule that replaces Switch blocks with an
implementation that includes test objectives,
requiring that each switch position be exercised
when the values of the first and third input ports
are different.

blkrep_rule_selector

   IndexVecPort_normal.m

blkrep_rule_selector

   IndexVecPort_configss.m

A rule that adds a Test Condition/Proof Assumption
block to the index port of Selector blocks whose
Index Option parameter is Index vector
(port). The Test Condition/Proof Assumption
block constrains signal values to an interval whose
endpoints are derived from the values of the
Selector block's Input port size and Index mode
parameters.

blkrep_rule_selector

   StartingIdxPort_normal.m

blkrep_rule_selector

   StartingIdxPort_configss.m

A rule that adds a Test Condition/Proof Assumption
block to the index port of Selector blocks whose
Index Option parameter is Starting index
(port). The Test Condition/Proof Assumption
block constrains signal values to an interval whose
endpoints are derived from the values of the
Selector block's Input port size, Output size, and
Index mode parameters.

The library of replacement blocks that corresponds to the factory default rules is

matlabroot/toolbox/sldv/sldv/sldvblockreplacementlib

4-7



4 Working with Block Replacements

Template for Block Replacement Rules

To help you create block replacement rules, Simulink Design Verifier provides an
annotated template that contains a skeleton implementation of the requisite callbacks:

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

To create a block replacement rule, make a copy of the template and edit the copy
to implement the desired behavior for the rule you are creating. The comments in
the template provide hints about how to use each section. For a tutorial on using the
template to write custom block replacements rules, see “Write Block Replacement Rules”
on page 4-10.

4-8



 Define Custom Block Replacements

Define Custom Block Replacements

In this section...

“Basic Workflow for Defining Custom Block Replacements” on page 4-9
“Specify Replacement Blocks” on page 4-9
“Write Block Replacement Rules” on page 4-10
“Replace Multiport Switch Blocks” on page 4-10

Basic Workflow for Defining Custom Block Replacements

To replace certain blocks in your model in a way that the factory-default block
replacement rules do not handle, create custom block replacement rules by completing
the following tasks:

• “Specify Replacement Blocks” on page 4-9
• “Write Block Replacement Rules” on page 4-10

Specify Replacement Blocks

A replacement block can be one of the built-in blocks in the Simulink model library or a
block in a user-created library.

In Simulink Design Verifier, replacement blocks have the following restrictions:

• They must be built-in blocks or subsystems.
• They cannot be Model blocks, nor can they include any Model blocks.

Note: A Model block cannot be a replacement block, but you can replace Model blocks
with built-in blocks or subsystems.

• They must reside in a block library that is available on your MATLAB search path.
• If the replacement block is a subsystem, any Inport and Outport blocks must have the

default names (In1 and Out1).

After constructing your replacement block, write a custom block replacement rule.

4-9



4 Working with Block Replacements

Write Block Replacement Rules

Block replacement rules have the following restrictions:

• The function that represents a block replacement rule must include particular
callbacks. Use the block replacement rule template as a starting point for writing a
custom rule. (See “Template for Block Replacement Rules” on page 4-8.)

• The function that represents a block replacement rule must be on the MATLAB
search path.

Replace Multiport Switch Blocks

• “Why Replace Multiport Switch Blocks?” on page 4-10
• “Create the Library and Replacement Block” on page 4-11
• “Write the Rule for the Replacement Block” on page 4-13

Why Replace Multiport Switch Blocks?

A Multiport Switch block has one control input port and one or more data input ports; the
default number of data inputs is 3.

A model may have test objectives on some blocks whose output is directly or indirectly
connected to the Multiport Switch block. For example, a Saturation block may send data
to the control input port. In this case, the analysis may create test cases that satisfy
those objectives. However, those test cases may create values that are out of range for
the control input port, regardless of whether the Multiport Switch block uses zero-based
indexing or one-based indexing. This causes the simulation to fail.

In this example, you create a rule to replace all Multiport Switch blocks that have two
data inputs and do not use zero-based indexing. The replacement block is a subsystem
that has a Test Condition block that constrains the value of the control input to 1 or
2, so that the analysis does not create out-of-range data input values. This allows the
analysis to satisfy the objectives on blocks that are connected to the control input port of
the Multiport Switch block.

4-10



 Define Custom Block Replacements

Create the Library and Replacement Block

Create a user library and specify the replacement block as a masked subsystem:

1 In the Simulink Library Browser, select File > New > Library.
2 In your library, create a subsystem named myReplacementBlock to represent your

replacement block.
3 Inside myReplacementBlock, add two Inport blocks so that the subsystem has

three input ports and one output port.

4 Add a Multiport Switch block and a Test Condition block to the subsystem. Set the
block parameters as follows.

• In the Multiport Switch block, set the Number of data ports parameter to 2.
• In the Test Condition block, set the Values parameter to {[1, 2]}.

5 To create a mask for your subsystem, from the top-level model, right-click
myReplacementBlock. From the context menu, select Mask > Create Mask.

6 In the Mask Editor, specify the following information:

• In the Parameters pane, define a mask parameter named InputSameDT as
shown.

4-11



4 Working with Block Replacements

This parameter replicates the behavior of the Require all data port inputs to
have the same data type parameter of the underlying Multiport Switch block.

• In the Initialization pane, in the Initialization commands field, enter
commands to specify that the subsystem inherit the InputSameDT parameter
value of the top-level model:

maskInputSameDT = get_param(gcb,'InputSameDT');

blkName = sprintf('/Multiport\nSwitch');

targetBlock = [gcb, blkName];

set_param(targetBlock,'InputSameDT',maskInputSameDT);

7 Save your block library as a model file called custom_rule in a folder on your
MATLAB search path.

4-12



 Define Custom Block Replacements

Write the Rule for the Replacement Block

To write a rule for the replacement block:

1 Open the block replacement rule template

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

2 Make a copy of the file and save it as custom_rule_switch.m in a folder on your
MATLAB search path.

Note: Execute steps 3 through 11 for the copy of the template that you saved.
3 To declare a function custom_rule_switch and modify its help, modify the first

few lines of the template:

function rule = custom_rule_switch

%CUSTOM_RULE_SWITCH Custom block replacement rule for

%Simulink Design Verifier

%

%   This block replacement rule identifies Multiport

%   Switch blocks whose "Number of inputs" parameter

%   specifies '2' and "Use zero-based indexing" parameter

%   specifies 'off'. It replaces such blocks with an

%   implementation that includes a Test Condition block

%   on the control input signal.

The function name must match its file name, without the .m extension. The
comments that follow the function declaration create help for this rule.

4 Specify the type of block that you want to replace in your model by specifying its
BlockType parameter as the rule.blockType object. For this example, change the
rule.blockType object to 'MultiPortSwitch':

%% Target Block Type

%

rule.BlockType = 'MultiPortSwitch';

Note: You can use the get_param function to obtain the value of the BlockType
parameter for the block that you want to replace.

5 Specify the full block path name for the replacement block as the
rule.ReplacementPath object. For this example, to replace Multiport Switch
blocks with the replacement block developed in “Specify Replacement Blocks” on

4-13



4 Working with Block Replacements

page 4-9, modify therule.ReplacementPath object using the full block path
name:

%% Replacement Library 

%

rule.ReplacementPath = sprintf('custom_rule/myReplacementBlock');

Note: To get the full block path name, use the gcb function.

6 To specify the type of subsystem that the software uses when replacing blocks,
specify a value for the rule.ReplacementMode object. Valid values are:

• Normal — The software replaces blocks with a copy of the subsystem specified by
the rule.ReplacementPath object. This is the default.

• ConfigurableSubSystem — The software replaces blocks with a Configurable
Subsystem block. With the Configurable Subsystem block, you can choose
whether it represents the subsystem specified by the rule.ReplacementPath
object, or the original block before its replacement.

For this example, set rule.ReplacementMode to Normal:

%% Replacement Mode

%

rule.ReplacementMode = 'Normal';

7 Specify parameter values that the replacement blocks inherit from the blocks being
replaced. You achieve inheritance by mapping the parameter names in a structure.
Each field of the structure represents a parameter that the replacement block
inherits. Specify the value of each field using the token $original.parameter$.
parameter is the name of the parameter that belongs to the original block.

To define a structure named parameter that maps the InputSameDT parameter
from the original Multiport Switch blocks to their replacement blocks, change the
content of the Parameter Handling section as follows:

%% Parameter Handling

%

parameter.InputSameDT = '$original.InputSameDT$';

% Register the parameter mapping for the rule

rule.ParameterMap = parameter;

4-14



 Define Custom Block Replacements

Note: To determine block parameter names, refer to “Block Libraries” (Simulink).

8 To define the callback functions, keep the following lines in the file:

%% Replacement Test Callback

% Customize the local function 'replacementTestFunction' to specify the

% conditions under which Simulink Design Verifier replaces blocks when

% using this rule. Simulink Design Verifier replaces blocks only when this

% local function returns true. 

%

rule.IsReplaceableCallBack = @replacementTestFunction;

%% Post Replacement Callback

% Customize the local function 'postReplacementFunction' to specify actions

% that will be performed after a block is replaced. 

%

% The usage of this callback in replacement rules is optional. Simulink

% Design Verifier does not enforce its existence in the rule definition. 

%

rule.PostReplacementCallBack = @postReplacementFunction;

9 Customize replacementTestFunction by specifying conditions under which
Simulink Design Verifier replaces blocks in your model.

To instruct the software to replace only the Multiport Switch blocks whose
NumInputPorts parameter is 2 and whose zeroIdx parameter is off, replace the
existing replacementTestFunction with the following:

function out = replacementTestFunction(blockH)

% Specify the logic that determines when the Simulink Design

% Verifier software replaces a block in your model. For example,

% restrict replacements to only the blocks whose parameters

% specify particular values.

%

out = false;

numInputPorts = eval(get_param(blockH,'NumInputPorts'));

zeroIdx = get_param(blockH,'zeroIdx');

if numInputPorts==2 && strcmp(zeroIdx,'off')

   out = true; 

end   

Because replacementTestFunction executes after the model has been
compiled, you can access parameters such as CompiledPortDataTypes or
CompiledPortDimensions from replacementTestFunction.

4-15



4 Working with Block Replacements

For an example of a replacementTestFunction that accesses these parameters,
open the following file:
matlabroot/toolbox/sldv/sldv/private/blkrep_rule_switch_normal.m

10 Optionally, you can customize postReplacementFunction to specify the actions
the software performs after a block has been replaced.

For an example of a postReplacementFunction, open the following file:
matlabroot/toolbox/sldv/sldv/private/blkrep_rule_selectorIndexVecPort_normal.m

11 Save the edited file and continue to the next section, “Execute Block Replacements”
on page 4-17, to execute your replacement rule.

4-16



 Execute Block Replacements

Execute Block Replacements

In this section...

“Configure Block Replacements” on page 4-17
“Replace Blocks in a Model” on page 4-18

Configure Block Replacements

You must configure block replacement options before executing block replacements in
your model. To specify block replacement options from the model window:

1 Open the sldvdemo_param_identification model.
2 Rename this model to my_sldvdemo_param_identification, and save it in a

folder on your MATLAB search path.
3 In the Model Editor, select Analysis > Design Verifier > Options.

The Configuration Parameters dialog box displays the main pane of the Design
Verifier category.

4 In the Configuration Parameters dialog box, select Design Verifier > Block
Replacements.

5 On the Block Replacements pane, select Apply block replacements to enable
block replacements.

Selecting this check box provides access to the List of block replacement rules
(in order of priority) and File path of the output model options.

6 To execute your custom block replacement rule, follow these steps:

a In the List of block replacement rules (in order of priority) box, delete:

<FactoryDefaultRules>

b Enter:

custom_rule_switch

The Simulink Design Verifier software replaces a block in your model only once. If
multiple rules apply to the same block, the software replaces the block using the rule
with the highest priority.

4-17



4 Working with Block Replacements

7 In the File path of the output model field, accept the default to create a model
named my_sldvdemo_param_identification_replacement. This model is a
copy of the original model and includes the block replacements.

By default, this software creates a model named $ModelName$_replacement,
where $ModelName$ is the name of the model it is analyzing. To use a different
name for the model with the block replacements, enter the name in this field. You do
not need to include a file extension.

8 Click Apply.
9 Save the my_sldvdemo_param_identification model.

Replace Blocks in a Model

• “Replace Blocks and Analyze Model with the Block Replacements” on page 4-18
• “Perform the Block Replacements Only” on page 4-19

Replace Blocks and Analyze Model with the Block Replacements

After enabling the Apply block replacements option, you can start a Simulink Design
Verifier analysis that analyzes the model after executing the block replacements. To
trigger block replacements and start the analysis, do one of the following:

• Select Analysis > Design Verifier > Options, and on the Design Verifier pane,
click Generate Tests.

• In the Model Editor, select Analysis > Design Verifier > Generate Tests > Model.

Note: If your model has unsaved changes, Simulink Design Verifier asks if you want to
save the model before executing the block replacements.

The Simulink Design Verifier software copies your model, replaces blocks in the copy,
without altering the original model, and analyzes the model with the replacements.

Upon completing its analysis, you can generate a detailed analysis report that includes
information about the block replacements it executed. For each block replacement, you
can follow a link from the report to the block replacement in the model copy, saved using
the name you specified on the Design Verifier > Block Replacements pane of the
Configuration Parameters dialog box.

4-18



 Execute Block Replacements

Perform the Block Replacements Only

Replacing the blocks in a model before running the analysis can help you debug the
custom block replacement rules. Once the block replacement rules are working as you
want, analyze the model that contains the block replacements.

To perform only the block replacements, without analyzing the model with the block
replacements, at the command line or from a program, use the sldvblockreplacement
function. Set two parameters of the sldvoptions structure related to replacing blocks,
and call sldvblockreplacement as follows:

opts = sldvoptions;

opts.BlockReplacement = 'on'

opts.BlockReplacementRulesList = ...

   'custom_rule_switch, <FactoryDefaultRules>';

[status, newmodelH] = sldvblockreplacement(...

   'my_sldvdemo_param_identification', opts);

If you execute block replacements programmatically, in the MATLAB Command Window,
Simulink Design Verifier displays a table that lists available block replacement rules
and opens the copy of the model that contains the block replacements ($ModelName
$_replacement).

The table lists all built-in rules and any custom rules that you specified using the List
of block replacement rules (in order of priority) option (see “Configure Block
Replacements” on page 4-17). The table includes the following information:

• Type

Type of rule, either built-in or custom
• Registration MATLAB File name

Name of the file that expresses the rule
• Block types

BlockType parameter value of the block that the rule replaces
• Priority

Priority of execution when multiple rules target the same type of block for
replacement

• Active

Flag that indicates whether the rule is active (1) or ignored (0)

The output also displays information about the block replacements. For example, the
output for this example indicates that the software used the custom_rule_switch.m
rule to replace a Multiport Switch block (of the same name) at the top level of the model.

4-19





5

Specifying Parameter Configurations

• “Parameter Constraint Values” on page 5-2
• “Define Constraint Values for Parameters” on page 5-4
• “Specify Parameter Constraint Values for Full Coverage” on page 5-10
• “Store Parameter Constraints in MATLAB Code Files” on page 5-21
• “Define Constraint Values for Parameters in MATLAB Code Files” on page 5-24



5 Specifying Parameter Configurations

Parameter Constraint Values

In this section...

“Parameter Configuration for Analysis” on page 5-2
“Data Types in Parameter Configurations” on page 5-3
“Parameters in Variant Subsystems” on page 5-3

Parameter Configuration for Analysis

Simulink Design Verifier software can treat parameters in your model as variables
during its analysis. For example, suppose you specify a variable that is defined in the
MATLAB workspace as the value of a block parameter in your model. You can instruct
Simulink Design Verifier to use additional values for that parameter in its analysis.

This allows you to, for example:

• Extend the results of a error detection analysis property proof to consider the impact
of additional parameter values.

• Generate comprehensive test cases for situations in which parameter values must
vary to achieve more complete coverage results. For more information, see “Specify
Parameter Constraint Values for Full Coverage” on page 5-10.

If you place a constraint on a parameter in your model, during analysis that parameter
takes only your specified constraint value or values. A group of constraints on
parameters in the same model is also called a parameter configuration.

Use the Parameter Table to manage constraints on your model parameters for analysis.
In the Parameter Table, you can:

• Autogenerate value ranges for parameters in your model. See “Autogenerate
Parameter Constraint” on page 5-13.

• Enter your own value ranges for parameters in your model. See “Define Constraint
Values for Parameters” on page 5-4.

• Highlight objects in your model that have parameters configured to act as variables
during analysis. See “Highlight Constrained Parameters in Model” on page 5-9.

• Import and export parameter configurations from MATLAB code files. See “Store
Parameter Constraints in MATLAB Code Files” on page 5-21.

5-2



 Parameter Constraint Values

Note: When you configure Simulink Design Verifier to treat parameters as variables in
its analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with
a Data file and apply parameter configurations with a Parameter configuration file
or the Parameter Table, when you attempt to perform Simulink Design Verifier analysis,
the software reports that your model is incompatible. This occurs because the existing
test cases do not include corresponding parameter values.

Data Types in Parameter Configurations

Consider the following issues related to data types when constraining parameter values:

• “Parameters Cannot Be Structures” on page 5-3
• “Parameters Converted to Fixed Point in the Model” on page 5-3
• “Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations”

on page 5-3

Parameters Cannot Be Structures

If the data type of a parameter in the MATLAB workspace is struct, Simulink Design
Verifier cannot generate values for that parameter during the analysis.

Parameters Converted to Fixed Point in the Model

If your model references a base workspace parameter whose data type is auto, single,
or double, and the model converts that parameter to a fixed-point data type, you must
define the constraints for that parameter according to its fixed-point type.

Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations

For a parameter defined as Simulink.Parameter or an inherited class of
Simulink.Parameter whose data type is auto, if the parameter is referenced by
multiple locations with different data types, Simulink Design Verifier cannot generate
values for that parameter during the analysis.

Parameters in Variant Subsystems

Parameters can be used to select variants in Variant Subsystem blocks. These
parameters are listed in the Parameter Table. However, Simulink Design Verifier only
supports analyzing the active variant.

5-3



5 Specifying Parameter Configurations

Define Constraint Values for Parameters

In this section...

“Find Parameters and Autogenerate Constraints” on page 5-6
“Edit Parameter Constraints” on page 5-8
“Highlight Constrained Parameters in Model” on page 5-9

Using the Parameter Table, you can find and autogenerate constraints for parameters in
your model. This example uses the following model, which contains Gain and Constant
parameters defined as m and b, respectively.

The model callback function PreLoadFcn defines m and b in the MATLAB workspace.

5-4



 Define Constraint Values for Parameters

When the model opens:

• m is set to 5.
• b is a Simulink.Parameter object of type int8 whose value is set to 5.

5-5



5 Specifying Parameter Configurations

Find Parameters and Autogenerate Constraints

This example shows how to specify values or ranges of values used for model parameters
during Simulink Design Verifier analysis.

Open the Parameter Table.

In the Simulink Editor, select Analysis > Design Verifier > Options. In the Select
tree, choose Design Verifier > Parameters.

Enable the Parameter Table.

In the Parameters pane, select Enable parameter configuration and Use
parameter table.

Find parameters that can be constrained for analysis.

At the bottom of the Parameter Table, click Find in Model. The Parameter Table
searches your model for parameters that can be configured and loads them in the table.

When possible, the Parameter Table autogenerates constraint values for parameters. You
can use these autogenerated values or specify your own constraint.

In this example, in the Parameter Table, rows for model parameters m and b appear.

Each row represents a parameter configuration. You can edit the parameter’s constraint
value(s) in the field under Constraint. To use your specified parameter configuration in
analysis, select the check box in the field under Use. The following table provides more
details about these and other columns in the Parameter Table.

For parameter in row, the column... Shows...

Use Whether specified constraint for parameter
is used in analysis.

To include parameter configuration in
analysis, select the check box. To exclude

5-6



 Define Constraint Values for Parameters

For parameter in row, the column... Shows...

parameter configuration from analysis,
clear the selection.

Name Name of parameter.
Constraint Autogenerated or user-specified constraint

value(s) for parameter.

To change the specified constraint value(s),
double-click in this field and enter new
constraint value(s).

Value Value of parameter. If the parameter is
defined in a Simulink data dictionary that
is linked to the model, the column shows
the value of the parameter in the data
dictionary. Otherwise, it shows the value of
the parameter in the base workspace.

Min Specified minimum value for
parameter, if parameter is of type
Simulink.Parameter and has a specified
minimum value.

Max Specified maximum value for
parameter, if parameter is of type
Simulink.Parameter and has a specified
maximum value.

Model Element Path to model component(s) where
parameter is used.

Note: If you use a MATLAB variable from a data dictionary as a model parameter, SLDV
analysis does not consider the parameter as tunable. If you want the parameter to be
tunable for the analysis, use a Simulink.Parameter object for the parameter. To create
a Simulink.Parameter object in the data dictionary:

1 In the Model Explorer, on the Model Hierarchy pane, select the workspace under
the data dictionary that contains your MATLAB variable.

2 Select Add > Simulink Parameter. You see a new variable titled Param in the
workspace.

5-7



5 Specifying Parameter Configurations

3 Rename the variable. Assign the same data type as the original MATLAB variable.

4 In your model, use the variable that you just created as your parameter.

Edit Parameter Constraints

For each parameter you want to treat as a variable during analysis, specify constraint
values.

In the Parameter Table, in the Constraint column, double-click the field for the
parameter you want to constrain. Enter your constraint values.

For this example:

• For parameter b, specify the value range [4, 10].
• For parameter m, specify the value 3.

To enable a parameter configuration for analysis, click to select the row that corresponds
to the configured parameter. Click Enable.

To enable multiple parameter configurations at once, shift-click to select multiple rows,
and click Enable.

To exclude parameter configurations from analysis, click to select the row that
corresponds to the configured parameter. Click Disable.

When you disable a parameter configuration, the specified constraint for this parameter
is not used in analysis.

To disable multiple parameter configurations at once, shift-click to select multiple rows,
and click Disable.

To exclude a parameter configuration from analysis and delete its specified constraint,
click to select the row that corresponds to the configured parameter. Click Clear.

5-8



 Define Constraint Values for Parameters

The Parameter Table clears the specified constraint for the parameter, and the
parameter configuration is excluded from analysis.

To clear multiple parameter configurations at once, shift-click to select multiple rows,
and click Clear.

Highlight Constrained Parameters in Model

Highlight model components that use the parameters for which you have specified
constraints.

Select the parameter(s) you want to highlight in the model.

To select a parameter, click anywhere inside the Name or Constraint columns for either
parameter. Shift-click to select multiple parameters.

Click Highlight in Model.

In the Simulink Editor, model components that use the selected parameters are
highlighted.

5-9



5 Specifying Parameter Configurations

Specify Parameter Constraint Values for Full Coverage

In this section...

“About This Example” on page 5-10
“Construct Example Model” on page 5-11
“Parameterize Constant Block” on page 5-12
“Preload Workspace Variable” on page 5-12
“Autogenerate Parameter Constraint” on page 5-13
“Analyze Example Model” on page 5-14
“Simulate Test Cases” on page 5-17

About This Example

This example describes how to create and analyze a simple Simulink model, for which
you generate test cases that achieve decision coverage. However, in this example,
achieving complete decision coverage is possible only when Simulink Design Verifier
treats a particular block parameter as a variable during its analysis. This example
explains how to specify parameter configurations for use with the analysis.

The following workflow guides you through the process of completing this example.

Task Description See...

1 Construct the example model. “Construct Example Model” on page 5-11
2 Specify a variable as the value of

a Constant block parameter.
“Parameterize Constant Block” on page
5-12

3 Constrain the value of the
variable that the Constant block
specifies.

“Autogenerate Parameter Constraint” on
page 5-13

4 Generate test cases for your
model and interpret the results.

“Analyze Example Model” on page 5-14

5 Simulate the test cases and
measure the resulting decision
coverage.

“Simulate Test Cases” on page 5-17

5-10



 Specify Parameter Constraint Values for Full Coverage

Construct Example Model

Construct a simple Simulink model to use in this example:

1 Create an empty Simulink model.
2 Copy the following blocks into the empty Simulink Editor:

• From the Sources library:

• Two Inport blocks to initiate the input signals
• A Constant block to control the switch

• From the Signal Routing library: A Multiport Switch block to provide simple logic
• From the Sinks library: An Outport block to receive the output signal

3 Double-click the Multiport Switch block to access its dialog box and specify its
Number of data ports option as 2.

4 Connect the blocks so that your model looks like the following.

5 Select Simulation > Model Configuration Parameters.
6 In the Select tree on the left side of the Configuration Parameters dialog box, select

the Solver node. Under Solver options, set the Type option to Fixed-step, and
then set the Solver option to discrete (no continuous states).

7 In the Select tree, select the Diagnostics node. Set Automatic solver parameter
selection to none.

8 Click OK to apply your changes and close the Configuration Parameters dialog box.
9 Save your model as ex_defining_params_example for use in the next procedure.

5-11



5 Specifying Parameter Configurations

Parameterize Constant Block

Parameterize the Constant block in your model by specifying a variable as the value of
the Constant block's Constant value parameter:

1 Double-click the Constant block.
2 In the Constant value box, enter A.
3 Click OK to apply your change and close the Constant block parameter dialog box.
4 Save your model.

Preload Workspace Variable

Preload the value of the MATLAB workspace variable A referenced by the Constant
block:

1 Select File > Model Properties > Model Properties.
2 Click the Callbacks tab.
3 In the PreLoadFcn, enter:

A = int8(1);

4 Click OK to close the Model Properties dialog box and save your changes.
5 Close your model.
6 Open your model.

When you open the model, the PreLoadFcn defines a variable A of type int8 whose
value is 1.

5-12



 Specify Parameter Constraint Values for Full Coverage

Autogenerate Parameter Constraint

Use the Parameter Table to constrain the variable A to specified values.

1 In the Simulink Editor, select Analysis > Design Verifier > Options.
2 In Configuration Parameters dialog box, from the Select tree under Design

Verifier, select Parameters.
3 Select Enable parameter configuration.
4 Select Use parameter table.
5 At the bottom of the Parameter Table, click Find in Model.

The Parameter Table is populated with parameters from your model. When possible,
it autogenerates constraint values for each parameter, depending on the data type
and location of the parameter in the model.

In this case, a row appears for the parameter A that you defined. The table row for A
displays the following information:

• In the Name column, the parameter name (A).
• In the Constraint column, the constraint specified on parameter A. The

Parameter Table autogenerates the constraint values {1, 2}.
• In the Value column, the value of A in the base workspace. This value is 1.
• In the Model Element column, the model component in which A resides

(ex_defining_params_example/Constant).
• In the Use column, a check box indicating whether the specified constraint values

in the table are configured for analysis.

5-13



5 Specifying Parameter Configurations

6 In the Parameter Table, in the row for parameter A, make sure that you select the
Use check box.

When you enable this parameter configuration, during Simulink Design Verifier
analysis, the parameter A takes only the int8 values 1 and 2.

7 In the Configuration Parameters dialog box, click OK.
8 Save your model.

Analyze Example Model

Analyze the model using the parameter configuration you just created, and generate the
analysis report:

5-14



 Specify Parameter Constraint Values for Full Coverage

1 In the Simulink Editor, select Analysis > Design Verifier > Generate Tests >
Model.

Simulink Design Verifier begins analyzing your model to generate test cases.
2 When the software completes its analysis, in the Simulink Design Verifier Results

Summary window, select Generate detailed analysis report.

The software displays an HTML report named
ex_defining_params_example_report.html.

Keep the Results Summary window open for the next procedure.
3 In the Simulink Design Verifier report Table of Contents, click Test Cases.
4 Click Test Case 1 to display the subsection for that test case.

5-15



5 Specifying Parameter Configurations

This section provides details about Test Case 1 that Simulink Design Verifier
generated to satisfy a coverage objective in the model. In this test case, a value of 1
for parameter A satisfies the objective.

5 Scroll down to the Test Case 2 section in the Test Cases chapter.

This section provides details about Test Case 2, which satisfies another coverage
objective in the model. In this test case, a value of 2 for parameter A satisfies the
objective.

5-16



 Specify Parameter Constraint Values for Full Coverage

Simulate Test Cases

Simulate the generated test cases and review the coverage report that results from the
simulation:

1 In the Simulink Design Verifier Results Summary window, select Create harness
model.

The software creates and opens a harness model named
ex_defining_params_example_harness.

2 The block labeled Inputs in the harness model is a Signal Builder block that contains
the test case signals. Double-click the Inputs block to view the test case signals in
the Signal Builder block.

5-17



5 Specifying Parameter Configurations

3
In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates each of the test cases in succession, collects
coverage data for each simulation, and displays an HTML report of the combined
coverage results at the end of the last simulation.

4 In the model coverage report, review the Summary section:

5-18



 Specify Parameter Constraint Values for Full Coverage

This section summarizes the coverage results for the harness model and its Test
Unit subsystem. Observe that the subsystem achieves 100% decision coverage.

5 In the Summary section, click the Test Unit subsystem.

The report displays detailed coverage results for the Test Unit subsystem.

5-19



5 Specifying Parameter Configurations

This section reveals that the Multiport Switch block achieves 100% decision coverage
because the test cases exercise each of the switch pathways.

5-20



 Store Parameter Constraints in MATLAB Code Files

Store Parameter Constraints in MATLAB Code Files

In this section...

“Export Parameter Constraints to File” on page 5-21
“Import Parameter Constraints from File” on page 5-23

You can use the Parameter Table to manage constraints on your model parameters for
analysis. If you place a constraint on a parameter in your model, during analysis that
parameter takes only your specified constraint value or values. A group of constraints
on parameters in the same model is also called a parameter configuration. You can store
groups of parameter constraints in a MATLAB code file called a parameter configuration
file. For more information on configuring parameters for Simulink Design Verifier, see
“Define Constraint Values for Parameters” on page 5-4.

To enable parameter configuration, in the Simulink Editor, select Analysis > Design
Verifier > Parameters. In the Parameters pane, select Enable parameter
configuration.

Export Parameter Constraints to File

Using the Parameter Table, you can export parameter constraint values to a MATLAB
code file. If you later want to use the same parameter configuration in a different
analysis, you can import your previously specified parameter constraint values from the
MATLAB code file.

To export parameter constraint values to a file:

1 Open the Parameter Table. In the Simulink Editor, select Analysis > Design
Verifier > Options. In the Select tree, choose Design Verifier > Parameters.

The Parameter Table shows specified constraint values for parameters in your
model, as in the following example screen shot.

5-21



5 Specifying Parameter Configurations

2 Click Export to File.

The Parameter Configuration File saves the current parameter configurations to a
.m file with the name you specify. Parameters that do not have the Use check box
enabled appear as commented lines in the parameter configuration file.

In the example shown in the previous step, the parameter configuration file contains
the following code:

function params = ex_many_params_config

params.param_01 = {0, 1};

% params.param_02 = {0, 01};

params.param_03 = {0, 1};

% params.param_04 = {0, 1};

5-22



 Store Parameter Constraints in MATLAB Code Files

Import Parameter Constraints from File

If you defined parameter configurations for analysis in a release prior to R2014a, you
can import corresponding MATLAB files and manage these parameters in the Parameter
Table.

To import parameter constraints from a MATLAB code file:

1 Open the Parameter Table. In the Simulink Editor, select Analysis > Design
Verifier > Options. In the Select tree, choose Design Verifier > Parameters.

2 Click Add from File. Choose a parameter configuration file.

The Parameter Table loads specified parameter constraints from the code, excluding
code comments, from the file. If you specify a constraint for a parameter and then
load a parameter configuration file containing constraint specification for the same
parameter, the constraint specified in the file overwrites the preexisting constraint
in the table.

Simulink Design Verifier provides an example parameter configuration file for the
example model sldvdemo_param_identification:

matlabroot/toolbox/sldv/sldvdemos/sldvdemo_param_ident_config.m

5-23



5 Specifying Parameter Configurations

Define Constraint Values for Parameters in MATLAB Code Files

In this section...

“Template Parameter Configuration File” on page 5-24
“Syntax in Parameter Configuration Files” on page 5-24

To specify parameters as variables for analysis, you can use the Parameter Table
or define parameter configurations in a MATLAB code file. You can also export
parameter configuration files from the Parameter Table. For more information, see
“Store Parameter Constraints in MATLAB Code Files” on page 5-21.

This example shows how to define parameter configurations in a MATLAB code file.
For an example that shows how to define these parameter configurations using the
Parameter Table, see “Define Constraint Values for Parameters” on page 5-4.

Template Parameter Configuration File

The Simulink Design Verifier software provides an annotated template that you can use
as a starting point:

matlabroot/toolbox/sldv/sldv/sldv_params_template.m

To create a parameter configuration file, make a copy of the template and edit the copy.
The comments in the template explain the syntax for defining parameter configurations.

To associate the parameter configuration file with your model before analyzing
the model, in the Configuration Parameters dialog box, on the Design Verifier >
Parameters pane, enter the file name in the Parameter configuration file field.

Syntax in Parameter Configuration Files

Specify parameter configurations using a structure whose fields share the same names as
the parameters that you treat as input variables.

For example, suppose you want to constrain the Gain and Constant value parameters,
m and b, which appear in the following model:

5-24



 Define Constraint Values for Parameters in MATLAB Code Files

The PreLoadFcn callback function defines m and b in the MATLAB workspace when you
open the model:

• m is set to 5.
• b is a Simulink.Parameter object of type int8 whose value is set to 5.

5-25



5 Specifying Parameter Configurations

In your parameter configuration file, specify constraints for m and b:

params.b = int8([4 10]);

params.m = {};

This file specifies:

• b is an 8-bit signed integer from 4 to 10. The constraint type must match the type of
the parameter b in the MATLAB workspace, int8, in this example.

5-26



 Define Constraint Values for Parameters in MATLAB Code Files

• m is not constrained to any values.

Specify points using the Sldv.Point constructor, which accepts a single value as its
argument. Specify intervals using the Sldv.Interval constructor, which requires two
input arguments, i.e., a lower bound and an upper bound for the interval. Optionally, you
can provide one of the following values as a third input argument that specifies inclusion
or exclusion of the interval endpoints:

• '()' — Defines an open interval.
• '[]' — Defines a closed interval.
• '(]' — Defines a left-open interval.
• '[)' — Defines a right-open interval.

Note: By default, Simulink Design Verifier considers an interval to be closed if you omit
this argument.

The following example constrains m to 3 and b to any value in the closed interval [0, 10]:

params.m = Sldv.Point(3);

params.b = Sldv.Interval(0, 10);

If the parameters are scalar, you can omit the constructors and instead specify single
values or two-element vectors. For example, you can alternatively specify the previous
example as:

params.m = 3;

params.b = [0 10];

Note: To indicate no constraint for an input parameter, specify params.m = {} or
params.m = []. The analysis treats this parameter as free input.

You can specify multiple constraints for a single parameter using a cell array. In this
case, the analysis combines the constraints using a logical OR operation.

The following example constrains m to either 3 or 5 and constrains b to any value in the
closed interval [0, 10]:

params.m = {3, 5};

5-27



5 Specifying Parameter Configurations

params.b = [0 10];

You can specify several sets of parameters by expanding the size of your structure. For
example, the following example uses a 1-by-2 structure to define two sets of parameters:

params(1).m = {3, 5};

params(1).b = [0 10];

params(2).m = {12, 15, Sldv.Interval(50, 60, '()')};

params(2).b = 5;

The first parameter set constrains m to either 3 or 5 and constrains b to any value in the
closed interval [0, 10]. The second parameter set constrains m to either 12, 15, or any
value in the open interval (50, 60), and constrains b to 5.

5-28



6

Detecting Design Errors

• “What Is Design Error Detection?” on page 6-2
• “Derived Ranges in Design Error Detection” on page 6-3
• “Run a Design Error Detection Analysis” on page 6-5
• “Check a Model for Dead Logic” on page 6-10
• “Dead Logic Detection” on page 6-11
• “Detect Dead Logic Caused by an Incorrect Value” on page 6-13
• “Model Objects That Receive Dead Logic Detection” on page 6-17
• “Detect Integer Overflow and Division-by-Zero Errors” on page 6-26
• “Check for Specified Intermediate Minimum and Maximum Signal Values” on page

6-31
• “Detect Out of Bound Array Access Errors” on page 6-38



6 Detecting Design Errors

What Is Design Error Detection?

Design error detection is a Simulink Design Verifier analysis mode that detects the
following types of errors:

• Dead logic
• Integer or fixed-point data overflow
• Division by zero
• Intermediate signal values that are outside the specified minimum and maximum

values
• Out of bound array access

Before you simulate your model, analyze your model in design error detection mode to
find and diagnose these errors. Design error detection analysis determines the conditions
that cause the error, helping you identify possible design flaws. Design error detection
analysis also computes a range of signal values that can occur for block outports and
Stateflow local data in your model.

After the analysis, you can:

• Click individual blocks to view the analysis results for that block.
• Create a harness model containing test cases that demonstrate the errors.
• Create an analysis report that contains detailed results for the entire model.

6-2



 Derived Ranges in Design Error Detection

Derived Ranges in Design Error Detection

When you specify minimum and maximum values for a signal or data in a model
(Simulink), these values define a design range.

During design error detection, the software analyzes the model behavior and computes
the values that can occur during simulation for:

• Block Outports
• Stateflow local data

The range of these values is called a derived range.

The Use specified input minimum and maximum values parameter in the
Configuration Parameters dialog box, on the Design Verifier pane, if enabled, tells
the analysis to consider the design ranges on the model input ports as constraints when
calculating the derived ranges. By default, the Use specified input minimum and
maximum values parameter is enabled.

If Use specified input minimum and maximum values is disabled, the software does
not restrict the signals when computing the derived ranges.

To see how this process works, consider the following model.

In this model, the design ranges are:

• Inport block: [–25..25]
• Abs block output: [10..30]

Given the design range on the Inport block, the only possible values for the Abs block
output are values from 0 to 25. Therefore, the derived range for the Abs block is [0..25].

However, if you disable the Use specified input minimum and maximum values
parameter, the analysis calculates the derived ranges based on unrestricted values of the

6-3



6 Detecting Design Errors

input ports of the model. In the preceding model, the only valid outputs of the Abs block
are nonnegative numbers. Consequently, the derived range for the Abs block is [0..Inf].

6-4



 Run a Design Error Detection Analysis

Run a Design Error Detection Analysis

In this section...

“Workflow for Detecting Design Errors” on page 6-5
“Understand the Analysis Results” on page 6-5
“Review the Latest Analysis Results in the Model Explorer” on page 6-8
“Check For Design Errors using the Model Advisor” on page 6-8

Workflow for Detecting Design Errors

To analyze your model for design errors, use the following workflow:

1 Verify that your model is compatible with Simulink Design Verifier software.
2 If you have Stateflow objects in your model, in the Configuration Parameters dialog

box, on the Diagnostics > Stateflow pane, set Unreachable execution path to
error.

3 Specify options that control how Simulink Design Verifier detects design errors in
your model.

4 Execute the Simulink Design Verifier analysis.
5 Review the analysis results.

Note: If you select design error detection for dead logic, you cannot select any other type
of design error detection. For dead logic detection, Simulink Design Verifier performs an
independent analysis. If you want to detect design errors for dead logic and any of the
other types of design errors, you must perform design error detection analysis twice.

Understand the Analysis Results

When you run a design error detection analysis, by default, the software highlights model
objects in one of four colors so that the analysis results are easy to review.

Model Object
Highlighting Color

Analysis Results

Green One of the following:

6-5



6 Detecting Design Errors

Model Object
Highlighting Color

Analysis Results

• The analysis did not find overflow or division-by-zero errors.
• The analysis did not find dead logic.
• The analysis did not find intermediate or output signals

outside the range of user-specified minimum and maximum
constraints.

• The analysis did not find out of bound array access errors.

Note: If your design contains at least one object that Simulink
Design Verifier highlights red, other objects in your model that
are highlighted green may also contain further design errors. If
an object in your design causes run-time errors, Simulink Design
Verifier may not be able to determine further errors on objects
that are downstream of or rely on the results of the object that
causes the run-time errors. Resolve the errors that cause the
initial red highlighting and re-run the analysis to determine if
Simulink Design Verifier will also highlight other objects in your
model as red.

Red One of the following:

• The analysis found at least one test case that causes overflow
or division-by-zero errors.

• The analysis found dead logic.
• The analysis found intermediate or output signals outside the

range of user-specified minimum and maximum constraints.
• The analysis found at least one test case that causes an out of

bound array access error.

6-6



 Run a Design Error Detection Analysis

Model Object
Highlighting Color

Analysis Results

Orange For at least one objective, the analysis could not determine if the
model has dead logic, overflow errors, division-by-zero errors,
signals outside the user-specified range, or out of bound array
access errors. This situation can occur when:

• The analysis times out.
• The software cannot determine if an error occurred or not.

This result is due to:

• Automatic stubbing errors; for more information, see
“Handle Incompatibilities with Automatic Stubbing” on
page 2-8.

• Limitations of the analysis engine.
Gray The model object was not part of the analysis.

The Simulink Design Verifier Results window initially displays a summary of the
analysis results, as in the following example.

When you click an object in the model, additional details about the results for that object
are displayed in the Simulink Design Verifier Results window.

6-7



6 Detecting Design Errors

Tip: By default, the Simulink Design Verifier Results window is always the topmost
visible window. To change that setting, click the  icon and on the context menu, clear
the check mark next to Always on top.

Review the Latest Analysis Results in the Model Explorer

If you close the analysis results to fix the cause of the errors in your model, you might
need to rereview the analysis results. As long as your model remains open, you can view
the results of your most recent analysis results in the Model Explorer.

After you close your model, you can no longer view any analysis results.

To view the latest results, in the model window, select Analysis > Design Verifier  >
Latest Results. The Model Explorer opens with the results displayed on the right-hand
pane.

For any Simulink Design Verifier analysis, from the Model Explorer, you can perform the
following tasks:

• Highlight the analysis results on the model.
• Generate a detailed analysis report.
• Create the harness model, or if the harness model already exists, open it.

Note: If no objectives are falsified, you cannot create the harness model.
• View the data file.
• View the log file.

Check For Design Errors using the Model Advisor

You can perform design error detection analysis from the Model Advisor, which is
particularly useful if you need to perform other model checks. To analyze your model
from the Model Advisor, follow this high-level workflow:

1 Specify options that control how Simulink Design Verifier detects design errors in
your model.

2 Open the Model Advisor.

6-8



 Run a Design Error Detection Analysis

3 From the system hierarchy, select the model or model component you want to
analyze

4 Expand the design error detection analysis items. Look for Simulink Design Verifier
under either By Product or By Task.

5 If you have not checked your model for compatibility, enable the compatibility check
for Simulink Design Verifier.

6 Select the design error detection checks you want to run.
7 Run the selected checks.
8 Review the analysis results.

More About
• “Select and Run Model Advisor Checks” (Simulink)

6-9



6 Detecting Design Errors

Check a Model for Dead Logic

In this section...

“Analyze Models for Dead Logic” on page 6-10
“Common Causes of Dead Logic” on page 6-10
“Dead Logic Analysis Results” on page 6-10
“” on page 6-10

Analyze Models for Dead Logic

Detecting Dead Logic vs. Dead and Active Logic

Workflow for Dead Logic Detection

Common Causes of Dead Logic

Dead Logic Analysis Results

6-10



 Dead Logic Detection

Dead Logic Detection

In this section...

“Detect Dead Logic Only” on page 6-11
“Detect Dead and Active Logic” on page 6-12

Design error detection for dead logic in Simulink Design Verifier consists of two analysis
options:

• Detection of dead logic only. If you select this option, Simulink Design Verifier does
not report active logic or undecided objectives. If you select this option, Simulink
Design Verifier analyzes your model without floating-point to rational number
conversion approximation or while loop approximation. For more information about
approximations in Simulink Design Verifier, see “Approximations” on page 2-16.

This option is available in:

• Model Advisor. See “Check For Design Errors using the Model Advisor” on page
6-8.

• The Configuration Parameters dialog box.
• Detection of active logic. Active logic detection runs concurrently with dead logic

detection. In rare cases, active logic detection can also find additional dead logic. This
option is available in the Configuration Parameters dialog box.

Detect Dead Logic Only

To detect dead logic if you are not using the Model Advisor:

1 In the Simulink Editor, select Analysis > Design Verifier > Options
2 In the Configuration Parameters dialog box, in the Select tree, under Design

Verifier, select Design Error Detection
3 In the Design Error Detection pane, select Dead logic.

Clear Identify active logic if it is selected.
4 Click OK to apply these settings and close the Configuration Parameters dialog box.
5 In the Simulink Editor, select Analysis > Design Verifier > Detect Design

Errors.

6-11



6 Detecting Design Errors

Detect Dead and Active Logic

1 In the Simulink Editor, select Analysis > Design Verifier > Options
2 In the Configuration Parameters dialog box, in the Select tree, under Design

Verifier, select Design Error Detection
3 In the Design Error Detection pane, select Dead logic and then Identify active

logic.
4 Click OK to apply these settings and close the Configuration Parameters dialog box.
5 In the Simulink Editor, select Analysis > Design Verifier > Detect Design

Errors.

More About
• “Design Verifier Pane: Design Error Detection” on page 15-58

6-12



 Detect Dead Logic Caused by an Incorrect Value

Detect Dead Logic Caused by an Incorrect Value

In this section...

“Analyze the Fuel System Model” on page 6-13
“Review the Results and Trace to the Model” on page 6-14
“Investigate the Cause of the Dead Logic” on page 6-15
“Update the Input Constraint and Re-Analyze the Model” on page 6-15

Dead logic detection helps you to identify:

• Model design errors.
• Extraneous model elements.
• Model elements that should be executed, but are not.

In this example, you analyze a fuel rate controller model to determine if the model
contains dead logic. Dead logic detection finds the incorrect variable value that causes a
transition condition in a Stateflow chart to remain inactive.

Analyze the Fuel System Model

1 Open the model by entering

sldvdemo_fuelsys_logic_simple

Ensure that the current folder is writable.
2 Configure dead logic detection. Open the model configuration parameters, and select

the Design Verifier options.
3 Select Design Error Detection options.
4 Select Dead logic. Clear Identify active logic. Click OK.
5 In the Simulink menu, select Analysis > Design Verifier > Detect Design Errors

> Model.
6 The results dialog box shows that there are 2/109 objectives that are dead logic.

6-13



6 Detecting Design Errors

Review the Results and Trace to the Model

1 Create an analysis report. From the results inspector window, click HTML.
2 Scroll to the Dead Logic section under Design Error Detection Objectives

Status. The table lists two instances of dead logic.
3 In the Description column, one of the dead logic instances is the false

condition of press < zero_thresh. The dead logic result indicates that in
the simulation, the false condition was not executed. This logic is part of the
Sens_Failure_Counter.INC transition.

4 Click the Model Item link. Simulink highlights the transition in the chart.

6-14



 Detect Dead Logic Caused by an Incorrect Value

Investigate the Cause of the Dead Logic

1 The logical statement controlling the transition is

speed==0 & press < zero_thresh

2 Return to the report. Scroll to the Constraints section.
3 The value of the input control logic/Input Data "press" is constrained from

0 through 2. Click the link to open the input in the Model Explorer.
4 Select the Model Workspace in the Model Explorer. In the contents table, select

zero_thresh. The value of zero_thresh is 250.

Given the constrained value of press, it is always less than zero_thresh and
therefore, the false condition is never exercised.

Update the Input Constraint and Re-Analyze the Model

1 Change the value of zero_thresh to 0.250.
2 Reanalyze the model. In the Simulink menu, select Analysis > Design Verifier >

Detect Design Errors > Model.
3 In the new results, the objective is no longer dead logic.

6-15



6 Detecting Design Errors

Related Examples
• “Dead Logic Detection” on page 6-11

6-16



 Model Objects That Receive Dead Logic Detection

Model Objects That Receive Dead Logic Detection

Model objects that have decision or condition outcomes receive dead logic detection,
as the following table shows. Click a link in the first column to get more detailed
information about the outcomes for specific model objects.

Model Object Receiving Dead Logic
Detection

Decision Outcomes Condition Outcomes

“Abs” on page 6-18  
“Dead Zone” on page 6-18  
“Discrete-Time Integrator” on page
6-19

 

“Enabled Subsystem” on page 6-19
“Enabled and Triggered Subsystem” on
page 6-20
“Fcn” on page 6-20  
“For Iterator, For Iterator Subsystem”
on page 6-20

 

“If, If Action Subsystem” on page
6-21
“Library-Linked Objects” on page
6-21
“Logical Operator” on page 6-21  
“MATLAB Function” on page 6-21
“MinMax” on page 6-22  
“Model” on page 6-22
“Multiport Switch” on page 6-22  
“Rate Limiter” on page 6-22  
“Relay” on page 6-23  
“Saturation” on page 6-23  
“Stateflow Charts” on page 6-24
“Switch” on page 6-24  

6-17



6 Detecting Design Errors

Model Object Receiving Dead Logic
Detection

Decision Outcomes Condition Outcomes

“SwitchCase, SwitchCase Action
Subsystem” on page 6-24

 

“Triggered Models” on page 6-24
“Triggered Subsystem” on page 6-25
“While Iterator, While Iterator
Subsystem” on page 6-25

 

Abs

The Abs block has decision outcomes based on:

• Input to the block being less than zero.
• Data type of the input signal.

For input to the block being less than zero, there are two decision outcomes:

• Block input is less than zero, indicating a true decision.
• Block input is not less than zero, indicating a false decision.

If the input data type to the Abs block is uint8, uint16, or uint32, the software sets
the block output equal to the block input without making a decision. If the input data
type to the Abs block is Boolean, an error occurs.

Dead Zone

The Dead Zone block has decision outcomes based on these parameters:

• Start of dead zone
• End of dead zone

The Start of dead zone parameter specifies the lower limit of the dead zone. For the
Start of dead zone parameter, there are two decision outcomes:

• Block input is greater than or equal to the lower limit, indicating a true decision.
• Block input is less than the lower limit, indicating a false decision.

6-18



 Model Objects That Receive Dead Logic Detection

The End of dead zone parameter specifies the upper limit of the dead zone. For the
End of dead zone parameter, there are two decision outcomes:

• Block input is greater than the upper limit, indicating a true decision.
• Block input is less than or equal to the upper limit, indicating a false decision.

Discrete-Time Integrator

The Discrete-Time Integrator block has decision outcomes based on these parameters:

• External reset
• Limit output

If you set External reset to none, the software does not report decision outcomes.
Otherwise, there are two decision outcomes:

• Block output is reset, indicating a true decision.
• Block output is not reset, indicating a false decision.

If you do not select Limit output, the software does not report decision outcomes.
Otherwise, the software reports decision outcomes for the Lower saturation limit and
the Upper saturation limit.

For the Upper saturation limit, there are two decision outcomes:

• Integration result is greater than or equal to the upper limit, indicating a true
decision.

• Integration result is less than the upper limit, indicating a false decision.

For the Lower saturation limit, there are two decision outcomes:

• Integration result is less than or equal to the lower limit, indicating a true decision.
• Integration result is greater than the lower limit, indicating a false decision.

Enabled Subsystem

The Enabled Subsystem block has two decision outcomes:

• Block is enabled, indicating a true decision.
• Block is disabled, indicating a false decision.

6-19



6 Detecting Design Errors

The Enabled Subsystem block has two condition outcomes only if the enable input is a
vector:

• Element of the enable input is true, indicating a true condition.
• Element of the enable input is false, indicating a false condition.

Enabled and Triggered Subsystem

The Enabled and Triggered Subsystem block has two decision outcomes:

• Trigger edge occurs while the block is enabled, indicating a true decision.
• Trigger edge does not occur while the block is enabled, or the block is disabled,

indicating a false decision.

The software determines condition outcomes for the enable input and the trigger input
separately.

• For the enable input:

• Input is true, indicating a true condition.
• Input is false, indicating a false condition.

• For the trigger input:

• Trigger edge occurs, indicating a true condition.
• Trigger edge does not occur, indicating a false condition.

Fcn

The Fcn block has two condition outcomes based on input values or arithmetic
expressions that are inputs to Boolean operators in the block:

• Input to a Boolean operator is true, indicating a true condition.
• Input to a Boolean operator is false, indicating a false condition.

For Iterator, For Iterator Subsystem

The For Iterator block and For Iterator Subsystem have two decision outcomes:

• Iteration value being at or below the iteration limit, indicated as true.

6-20



 Model Objects That Receive Dead Logic Detection

• Iteration value being above the iteration limit, indicated as false.

If, If Action Subsystem

The If blocks that causes an If Action Subsystem to execute has:

• Decision outcomes for the if condition and all elseif conditions defined in the If
block.

• Condition outcomes if the if condition or any of the elseif conditions contains a
logical expression with multiple conditions.

Library-Linked Objects

Simulink blocks and Stateflow charts that are linked to library objects receive the same
dead logic detection that they would receive if they were not linked to library objects.

Logical Operator

The Logical Operator block has two condition outcomes:

• Input is true, indicating a true condition.
• Input is false, indicating a false condition.

MATLAB Function

The following MATLAB Function block statements have decision outcomes:

• Function header - Function or sub-function that is executed.
• if - Expression evaluates to true, indicating a true decision. Expression evaluates to

false, indicating a false decision.
• switch - Decision outcomes corresponding to every switch case path, including the

fall-through case.
• for - Loop condition evaluates to true, indicating a true decision. Loop condition

evaluates to false, indicating a false decision.
• while - Loop condition evaluates to true, indicating a true decision. Loop condition

evaluates to false, indicating a false decision.

The following logical conditions have condition outcomes:

6-21



6 Detecting Design Errors

• if statement conditions
• while statement conditions

MinMax

The MinMax block has decision outcomes based on passing each input to the output of
the block.

For passing each input to the output of the block, there are two decision outcomes:

• Input passed to block output, indicating a true decision.
• Input not passed to block output, indicating a false decision.

Model

The Model block itself does not have decision or condition outcomes. The model that the
block references receive the decision or condition outcomes.

Multiport Switch

The Multiport Switch block has decision outcomes based on passing each input, excluding
the first control input, to the output of the block.

For passing each input, excluding the first control input, to the output of the block, there
are two decision outcomes:

• Input passed to block output, indicating a true decision.
• Input not passed to block output, indicating a false decision.

Rate Limiter

The Rate Limiter block has decision outcomes based on the Rising slew rate and
Falling slew rate parameters.

For the Rising slew rate, there are two decision outcomes:

• Block input changes more than or equal to the rising rate, indicating a true decision.
• Block input changes less than the rising rate, indicating a false decision.

6-22



 Model Objects That Receive Dead Logic Detection

For the Falling slew rate, there are two decision outcomes:

• Block input changes less than or equal to the falling rate, indicating a true decision.
• Block input changes more than the falling rate, indicating a false decision.

The software does not have Falling slew rate outcomes for a time step when the Rising
slew rate is true.

Relay

The Relay block has decision outcomes based on the Switch on point and the Switch
off point parameters.

For the Switch on point, there are two decision outcomes:

• Block input is greater than or equal to the Switch on point, indicating a true
decision.

• Block input is less than the Switch on point, indicating a false decision.

For the Switch off point, there are two decision outcomes:

• Block input is less than or equal to the Switch off point, indicating a true decision.
• Block input is greater than the Switch off point, indicating a false decision.

The software does not have Switch off point decision outcomes for a time step when the
switch on threshold is true.

Saturation

The Saturation block has decision outcomes based on the Lower limit and Upper limit
parameters.

For the Upper limit, there are two decision outcomes:

• Block input is greater than or equal to the upper limit, indicating a true decision.
• Block input is less than the upper limit, indicating a false decision.

For the Lower limit, there are two decision outcomes:

• Block input is greater than the lower limit, indicating a true decision.

6-23



6 Detecting Design Errors

• Block input is less than or equal to the lower limit, indicating a false decision.

The software does not have Lower limit decision outcomes for a time step when the
upper limit is true.

Stateflow Charts

The Stateflow Chart block has decision outcomes:

• Transition decision is evaluated as true, indicating a true decision.
• Transition decision is evaluated as false, indicating a false decision.

The Stateflow Chart block has condition outcomes:

• Condition is evaluated as true, indicating a true condition.
• Condition is evaluated as false, indicating a false condition.

Switch

The Switch block has decision outcomes based on the control input to the block.

For the control input to the block, there are two decision outcomes:

• Control input evaluates to true, indicating a true decision.
• Control input evaluates to false, indicating a false decision.

SwitchCase, SwitchCase Action Subsystem

The SwitchCase block and SwitchCase Action Subsystem have two decision outcomes:

• Block evaluates to true, indicating a true decision.
• Block does not evaluate to true, indicating a false decision.

Triggered Models

The Triggered Models block has two decision outcomes:

• Referenced model is triggered, indicating a true decision.
• Referenced model is not triggered, indicating a false decision.

6-24



 Model Objects That Receive Dead Logic Detection

If the trigger input is a vector, then there are two condition outcomes:

• Element of the trigger port is true, indicating a true condition.
• Element of the trigger port is false, indicating a false condition.

Triggered Subsystem

The Triggered Subsystem block has two decision outcomes:

• Block is triggered, indicating a true decision.
• Block is not triggered, indicating a false decision.

If the trigger input is a vector, then there are two condition outcomes:

• Element of the trigger edge is true, indicating a true condition.
• Element of the trigger edged is false, indicating a false condition.

While Iterator, While Iterator Subsystem

The While Iterator block and While Iterator Subsystem have two decision outcomes:

• while condition is satisfied, indicating a true decision.
• while condition is not satisfied, indicating a false decision.

6-25



6 Detecting Design Errors

Detect Integer Overflow and Division-by-Zero Errors

In this section...

“About This Example” on page 6-26
“Analyze the Model” on page 6-26
“Review the Analysis Results” on page 6-27

About This Example

The following sections describe how to analyze the
sldvdemo_cruise_control_fxp_fixed model for integer overflow and division-by-
zero errors.

Analyze the Model

Open and check model for integer overflow and division-by-zero errors:

1 Open the sldvdemo_cruise_control_fxp_fixed model.
2 Select Analysis > Design Verifier > Options.
3 In the Configuration Parameters dialog box, in the Select tree under Design

Verifier, select the Design Error Detection node.
4 On the Design Error Detection pane, select:

• Integer overflow
• Division by zero

5 In the Configuration Parameters dialog box, on the Diagnostics > Data Validity
pane, set Signals > Wrap on overflow, Signals > Saturate on overflow and
Parameters > Detect overflow to error.

6 Click OK to save these settings and close the Configuration Parameters dialog box.
7 Select Analysis > Design Verifier > Detect Design Errors > Model.

When the analysis is complete:

• The software highlights the model with the analysis results.

6-26



 Detect Integer Overflow and Division-by-Zero Errors

• The Simulink Design Verifier Results dialog box opens and displays a summary of the
analysis.

Review the Analysis Results

• “Review the Results on the Model” on page 6-27
• “Review the Harness Model” on page 6-29
• “Review the Analysis Report” on page 6-30

Review the Results on the Model

The derived ranges can help you understand the source of an error by identifying the
possible signal values, as you can see by taking the following steps:

1 At the top level of the sldvdemo_cruise_control_fxp_fixed model, click the
Fixed-Point Controller subsystem.

The Simulink Design Verifier Results window displays the derived range of possible
signal values for the Outports, as calculated by the analysis:

• The values of Outport 1 (throt) range from –2.6101 to 2.6096.
• The values of Outport 2 (target) range from 0 to 256.

2 Click the Outport blocks of the sldvdemo_cruise_control_fxp_fixed model to
see the same signal bound values.

3 Open the Fixed-Point Controller subsystem.

6-27



6 Detecting Design Errors

Two objects in this subsystem are outlined in red. The PI Controller subsystem is
outlined in green.

4 Click the Sum block, outlined in red, that provides the error input to the PI
Controller subsystem.

This Sum block can produce an overflow error. The analysis found a test case that
can result in a computation where the output of the Sum block exceeds the range
[–128..128].

5 To more fully understand this error, click the two blocks that provide the inputs to
the Sum block. In the Simulink Design Verifier Results window, view their derived
ranges:

• The third Outport from the Bus block has a range of [0..256].
• The Outport from the Switch block has a range of [0..256].

6-28



 Detect Integer Overflow and Division-by-Zero Errors

You can see that the sum operation for these signal ranges can compute a value that
exceeds the range [–128..128] for the Outport of the Sum block.

The analysis reports the overflow error on the Sum block. The analysis does not
propagate this error and assumes that the Sum block output is within the valid
range for any subsequent computations.

6 Click the PI Controller subsystem, outlined in green. None of the blocks in the PI
Controller subsystem can produce overflow or division-by-zero errors. When the
software analyzes the PI Controller subsystem, it ignores the overflow error from the
Sum block and assumes that the inputs to the subsystem are valid.

Keep the sldvdemo_cruise_control_fxp_fixed model open. In the next section,
you create the harness model to see the test case that generates the Sum block overflow
error.

Review the Harness Model

To see the test cases that demonstrate the errors, generate the harness model from the
Simulink Design Verifier Results window:

1 In the sldvdemo_cruise_control_fxp_fixed model, open the Fixed-Point
Controller subsystem.

2 Click the Sum block, outlined in red, that provides the error input to the PI
Controller subsystem.

The Simulink Design Verifier Results window displays information that an overflow
error occurred.

3 In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model containing the test case with the signal values
that cause this overflow error.

In the harness model, the Signal Builder dialog box opens, with Test Case 2
displayed.

4 Click the Start simulation button to simulate the model with this test case.

As expected, the simulation fails due to an overflow error at the Sum block in the
Fixed-Point Controller subsystem.

For more information, see “Simulink Design Verifier Harness Models” on page 13-16.

6-29



6 Detecting Design Errors

Review the Analysis Report

To view an HTML report containing detailed information about the analysis report for
the sldvdemo_cruise_control_fxp_fixed model:

1 In the Simulink Design Verifier Results window, to redisplay the results summary,
click Back to summary.

2 Click Generate detailed analysis report.

The software generates a detailed analysis report that opens in a browser.

For the sldvdemo_cruise_control_fxp_fixed model, the Design Error Detection
Objectives Status chapter of the report provides detailed results in two categories:

• Objectives Proven Valid — Model objects that did not produce errors
• Objectives Falsified with Test Cases — Model objects for which test cases

generated errors

For more information, see “Simulink Design Verifier Reports” on page 13-27.

6-30



 Check for Specified Intermediate Minimum and Maximum Signal Values

Check for Specified Intermediate Minimum and Maximum Signal
Values

In this section...

“Overview of Specified Minimum and Maximum Signal Values” on page 6-31
“About This Example” on page 6-32
“Create the Example Model” on page 6-32
“Analyze the Model” on page 6-34
“Review the Analysis Results” on page 6-34

Overview of Specified Minimum and Maximum Signal Values

During a design error detection analysis, the software checks the specified minimum and
maximum values on intermediate signals throughout the model and on the output ports.
These values define the design ranges.

The analysis checks for specified minimum and maximum values on:

• Simulink block outputs, with the exception of the limitations described in the next
section

• Simulink.Signal objects
• Stateflow data objects
• MATLAB for code generation data objects
• Global data store writes

If the analysis detects that a signal exceeds the design range, the results identify where
in the model the errors occurred. In addition, you can generate a harness model that
contains test cases that demonstrate how the error occurred.

Limitations of Checking Specified Minimum and Maximum Signal Values

If you analyze a model checking if specified minimum and maximum values are
exceeded, the software cannot check minimum and maximum values specified on:

• Simulink.BusElement objects.

6-31



6 Detecting Design Errors

• Any Mux block with an output connected to a Selector block
• Merge block inputs

To work around this limitation, use a Simulink.Signal object on the Merge block
output and specify the range on the Simulink.Signal object.

Note: For information about how a Simulink Design Verifier analysis handles specified
minimum and maximum values on input ports, see “Minimum and Maximum Input
Constraints” on page 11-2.

About This Example

In this section, you create and analyze a model that has specified design minimum and
maximum values on:

• The input ports
• The output ports of two of the intermediate blocks

The design error detection analysis identifies blocks where the output values exceed
the design range. If the analysis detects this error, this example demonstrates how the
analysis uses the specified minimum and maximum values when continuing the analysis.

Create the Example Model

Create the model for this example:

1 In the model window, select File > New > Model.
2 From the Simulink Commonly Used Blocks library, add the following blocks to the

model and assign the indicated parameter values.

Block Tab Parameter Value

Inport Signal Attributes Minimum 0

Inport Signal Attributes Maximum 5

Gain Main Gain 5

Gain Signal Attributes Output minimum 0

6-32



 Check for Specified Intermediate Minimum and Maximum Signal Values

Block Tab Parameter Value

Gain Signal Attributes Output maximum 20

Gain Signal Attributes Output data type int16

Saturation Main Upper limit 25

Saturation Main Lower limit -25

Saturation Signal Attributes Output minimum -25

Saturation Signal Attributes Output maximum 25

Outport No changes

3 Connect the four blocks as shown.

4 To display the specified minimum and maximum values in the model window, select
Display > Signals & Ports > Design Ranges.

5 Select Analysis > Design Verifier > Options.
6 In the Configuration Parameters dialog box, on the Solver pane, under Solver

options:

a Set Type to Fixed-step.

The Simulink Design Verifier software does not support variable-step solvers.
b Set Solver to discrete (no continuous states).

7 On the Design Verifier pane, set Mode to Design error detection.
8 On the Design Verifier > Design Error Detection pane:

a Select Check specified intermediate minimum and maximum values.
b Clear the Integer overflow and Division by zero parameters.

In this example, you check only for intermediate minimum and maximum violations.
9 To save these settings and exit the Configuration Parameters dialog box, click OK.
10 Save the model and name it ex_interim_minmax.

6-33



6 Detecting Design Errors

Analyze the Model

To analyze the example model to identify any intermediate signals that violate the
specified minimum and maximum values, select Analysis > Design Verifier > Detect
Design Errors > Model.

After the analysis is complete:

• The software highlights the model with the analysis results.

• The Simulink Design Verifier Results dialog box opens and displays a summary of the
analysis.

Review the Analysis Results

• “Review Results on the Model” on page 6-35
• “Review the Harness Model” on page 6-36
• “Review the Analysis Report” on page 6-37

6-34



 Check for Specified Intermediate Minimum and Maximum Signal Values

Review Results on the Model

In the model window, the Gain block is colored red and the Saturation block is colored
green. This indicates that:

• At least one objective associated with the Gain block was falsified. For this example,
the analysis falsified exactly one objective.

• All objectives associated with the Saturation block were satisfied. For this example,
the analysis satisfied exactly one objective.

To understand these results:

1 Click the Gain block.

The Simulink Design Verifier Results window shows that the design range for the
output was [0..20], but the analysis detected an error and generated a test case
that demonstrates that error. Because the design range for the input block is [0..5],
when the input to the Gain block is 5, the output is 25, which exceeds the specified
maximum value on that port.

The analysis computes and displays the derived range to help you understand how
the design range was exceeded.

When the software detects an error, the analysis proceeds, but constrains the signal
to the tightest intersection of the design range and the derived range, which for the
Gain block output in this example is [0..20].

2 Click the Saturation block.

6-35



6 Detecting Design Errors

The Simulink Design Verifier Results window shows that the output of the
Saturation block never exceeded the design range [–25..25]. The input to the
Saturation block never exceeded [0..20], which is the derived range that the analysis
propagated from the Gain block.

Review the Harness Model

When the analysis completes, you can create a harness model contains the test cases that
result in errors.

For the example model, view the test case that caused the design range error in the Gain
block:

1 After the analysis completes and the model is highlighted, click the Gain block.
2 In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model named ex_interim_minmax_harness and
opens the Signal Builder block in the harness model that contains the test case.

In the Signal Builder block, one test case, whose signal value is 5, caused the output
of the Gain block to be 25, which exceeds the specified maximum of 20.

3 Before you simulate this test case, in the Configuration Parameters dialog box,
on the Diagnostics > Data Validity pane, set Simulation range checking to
warning or error.

6-36



 Check for Specified Intermediate Minimum and Maximum Signal Values

Setting this parameter specifies the diagnostic action to take if Simulink detects
signals that exceed specified minimum or maximum values during simulation.

• If you specify warning, the simulation displays a warning message and
continues.

• If you specify error, the simulation displays an error message and stops.
4 Click OK to save your change and close the Configuration Parameters dialog box.
5 In the Signal Builder block window, click Start simulation to simulate the model

with this test case.

As expected, in the MATLAB window, the simulation displays a warning or error
that the output value of the Gain block exceeds the specified maximum.

Review the Analysis Report

You can also generate an HTML report containing detailed information about the
analysis report for the ex_interim_minmax model. To create this report, in the
Simulink Design Verifier Results window, click Generate detailed analysis report.
The analysis report opens in a browser.

In the analysis report, the Design Error Detection Objectives Status chapter of the
report provides detailed results in two categories:

• Objectives Proven Valid — The output values for the Saturation block are always
within the design range.

• Objectives Falsified with Test Cases — The output values for the Gain block
violated the design range.

6-37



6 Detecting Design Errors

Detect Out of Bound Array Access Errors

In this section...

“Design Error Detection for Out of Bound Array Access” on page 6-38
“Detect Out of Bound Array Access in Example Model” on page 6-39
“Limitations of Support for Out of Bound Array Access Design Error Detection” on page
6-44

Design Error Detection for Out of Bound Array Access

Simulink Design Verifier design error detection analysis detects out of bound array
access errors in your model. In simulation, when your model attempts to access an array
element using an invalid index, an out of bound array access error occurs.

To detect out of bound array access errors in your model:

1 In the Simulink Editor, select Analysis > Design Verifier > Options.

The Configuration Parameters dialog box opens to the Design Verifier pane.
2 Under Analysis options, from the Mode list, select Design error detection.
3 In the Select tree, under Design Verifier, select Design Error Detection.
4 Select Out of bound array access.
5 Click OK.
6 In the Simulink Editor, select Analysis > Design Verifier > Detect Design

Errors > Model.

The Simulink Design Verifier log window opens, showing the progress of the
analysis.

When the analysis is complete:

• The software highlights the model with the analysis results.
• The Simulink Design Verifier Results dialog box opens and displays an analysis

summary.

6-38



 Detect Out of Bound Array Access Errors

Detect Out of Bound Array Access in Example Model

This example shows how to detect out of bound array access errors in the
sldvdemo_array_bounds example model.

1 At the MATLAB command prompt, type:

sldvdemo_array_bounds

The example model opens.

6-39



6 Detecting Design Errors

Using input signal values, the ComputeIndex MATLAB Function block
determines a range of indices with minimum minIdx and maximum maxIdx. The
ArrayOp_Matlab, ArrayOp_MAL, and ArrayOp_SF blocks use the set of integer
indices between minIdx and maxIdx to access array elements and perform array
operations.

In this example model, the analysis options are configured for out of bound array
access error detection. To view these options, double-click the View Simulink
Design Verifier Options button.

2 Start the design error detection analysis by double-clicking the Run Simulink
Design Verifier button.

The Simulink Design Verifier log window opens, displaying the progress of the
analysis.

When the analysis is complete, the example model is highlighted with the analysis
results.

6-40



 Detect Out of Bound Array Access Errors

3 View the analysis results inside the chart by double-clicking the ArrayOp_SF Chart
block, highlighted in red.

4 See detailed analysis results for the Diff state in the Simulink Design Verifier
Results window by selecting the Diff state. That state is highlighted in red.

6-41



6 Detecting Design Errors

Simulink Design Verifier detected index out of bound errors for array u in state Diff.
5 Click the first View test case link.

Simulink Design Verifier creates and opens a harness model that contains test cases,
or input signal groups, that demonstrate out of bound array access errors.

6 In the Signal Builder dialog box, click Start simulation to simulate the harness
model with Test Case 1.

The simulation stops just before entering the state Diff. The Stateflow Debugger
opens. The following error is shown:

Runtime error: Index into array out of range

Model Name: sldvdemo_array_bounds_harness

Block Name: sldvdemo_array_bounds_harness/...

  Test Unit (copied from sldvdemo_array_bounds)/ArrayOp_SF

Attempted to access 4 element of data u(#188 (0:3:0))...

  The valid index range is 0 to 3

Keep the Stateflow Debugger open at this breakpoint.

6-42



 Detect Out of Bound Array Access Errors

7 In the sldvdemo_array_bounds_harness model, hold your cursor over the Diff
state to see the data values at this simulation breakpoint.

Using Test Case 1 input signal values, the ComputeIndex MATLAB Function block
determines the range of array indices to be 1:4. One-based indexing is consistent
with MATLAB syntax, so these indices are valid for the ArrayOp_Matlab MATLAB
Function block and the ArrayOp_MAL Stateflow chart.

6-43



6 Detecting Design Errors

The ArrayOp_SF Stateflow chart uses C as the action language, which does not
support one-based indexing. 1:4 is not a valid index range for array access in that
chart. The valid index range for array access in that chart is 0:3, as the error
message reported. When either maxIdx or minIdx evaluates to 4, an out of bound
array access error occurs in the ArrayOp_SF Chart block.

For more information on zero-based indexing support, see “Differences Between
MATLAB and C as Action Language Syntax” (Stateflow).

Limitations of Support for Out of Bound Array Access Design Error
Detection

Inf Index Values

Design error detection does not support indexing by Inf. If your model attempts to access
an array using an index value that evaluates to Inf, design error detection does not
report an out of bound array access error, but in simulation, an out of bound array access
error occurs.

Index Vector Block with Scalar Data Input

Out of bound array access design error detection does not support Index Vector blocks
with scalar data inputs. If your model includes an Index Vector block that specifies a
scalar data input instead of a vector data input and the control input causes an out of
bounds array access, design error detection does not report an error, but an error occurs
in simulation.

6-44



7

Generating Test Cases

• “What Is Test Case Generation?” on page 7-2
• “Workflow for Test Case Generation” on page 7-4
• “Generate Test Cases for Model Decision Coverage” on page 7-5
• “Use Test Generation Advisor to Identify Analyzable Components” on page 7-21
• “Model Coverage Objectives for Test Generation” on page 7-27



7 Generating Test Cases

What Is Test Case Generation?

The Simulink Design Verifier software can generate test cases that satisfy coverage
objectives for your model, including:

• “Decision” on page 7-27
• “Condition” on page 7-27
• “MCDC” on page 7-28

Test cases help you confirm model performance by demonstrating how the blocks in the
model execute in different modes. When generating test cases, the software performs
a formal analysis of your model. After completing the analysis, the software provides
several ways for you to review the results.

Test Case Blocks

For customizing test cases for your Simulink models, Simulink Design Verifier provides
two blocks:

• The Test Objective block defines the values of a signal that a test case must satisfy.
• The Test Condition block constrains the values of a signal during analysis.

Test Case Functions

To customize test cases for a Simulink model or Stateflow chart, Simulink Design
Verifier provides two MATLAB functions. You can use these functions in a MATLAB
Function block. Both functions are active in generated code and in Simulink Design
Verifier.

• sldv.test — Specifies a test objective.
• sldv.condition — Specifies a test condition.

These functions:

• Identify mathematical relationships for testing in a form that can be more natural
than using block parameters.

• Support specifying multiple objectives, assumptions, or conditions without
complicating the model.

7-2



 What Is Test Case Generation?

• Provide access to the power of MATLAB.
• Support separation of verification and model design.

For an example of how to use these functions, see the sldv.test or sldv.condition
reference page.

Note: Simulink Design Verifier blocks and functions are saved with a model. If you open
the model on a MATLAB installation that does not have a Simulink Design Verifier
license, you can see the blocks and functions, but they do not produce results.

7-3



7 Generating Test Cases

Workflow for Test Case Generation

To generate test cases for your model, use the following workflow.

Task Description For an example, see

1 Verify that your model is compatible
for use with Simulink Design
Verifier.

“Check Compatibility of the Example
Model” on page 7-6

2 Optionally, use the Test Generation
Advisor to select model components
(atomic subsystems and model
blocks) for test generation. Before
test generation, you can use the
results to better understand your
model, particularly large models,
complex models, or models for
which you are uncertain of the test
generation compatibility.

“Use Test Generation Advisor to
Identify Analyzable Components” on
page 7-21

3 If you have Stateflow objects in
your model, in the Configuration
Parameters dialog box, on the
Diagnostics > Stateflow pane, set
Unreachable execution path to
error.

 

4 Optionally, instrument your model
with blocks or MATLAB functions
that specify test objectives and test
conditions.

“Customize Test Generation” on page
7-17

5 Specify options that control how
Simulink Design Verifier generates
test cases for your model.

“Configure Test Generation Options”
on page 7-7

6 Execute the Simulink Design Verifier
analysis.

“Analyze the Example Model” on page
7-8 and “Reanalyze the Example
Model” on page 7-19

7 Review the analysis results. “Review Analysis Results” on page
7-8

7-4



 Generate Test Cases for Model Decision Coverage

Generate Test Cases for Model Decision Coverage

In this section...

“Construct the Example Model” on page 7-5
“Check Compatibility of the Example Model” on page 7-6
“Configure Test Generation Options” on page 7-7
“Analyze the Example Model” on page 7-8
“Review Analysis Results” on page 7-8
“Customize Test Generation” on page 7-17
“Reanalyze the Example Model” on page 7-19
“Analyze Contradictory Models” on page 7-20

Construct the Example Model

Construct a model for this example:

1 Create a Simulink model.
2 Copy the following blocks into your empty model window:

• From the Sources library, an Inport block to initiate the input signal whose value
Simulink Design Verifier controls.

• From the Sources library, two Constant blocks to serve as Switch block data
inputs.

• From the Signal Routing library, a Switch block to provide simple logic.
• From the Sinks library, an Outport block to receive the output signal.

3 In your model, double-click one of the Constant blocks and specify its Constant
value parameter as 2.

4 Connect the blocks so that your model appears similar to the following diagram.

7-5



7 Generating Test Cases

5 In the model window, select Simulation > Model Configuration Parameters.
6 On the left side of the Configuration Parameters dialog box, in the Select tree, click

the Solver category. On the right side, under Solver options:

• Set the Type option to Fixed-step.
• Set the Solver option to Discrete (no continuous states).

Simulink Design Verifier analyzes only models that use a fixed-step solver.
7 Click OK to save your changes and close the Configuration Parameters dialog box.
8 Save your model with the name ex_generate_test_cases_example.

Check Compatibility of the Example Model

Every time Simulink Design Verifier analyzes a model, before the analysis begins, the
software performs a compatibility check. If your model is not compatible, the software
cannot analyze it.

Before you start the analysis, you can also make sure that your model is compatible with
Simulink Design Verifier software:

1 Open the ex_generate_test_cases_example model.
2 In the model window, select Analysis > Design Verifier > Check Compatibility >

Model.

The software displays the log window, which states whether or not your model is
compatible for analysis.

7-6



 Generate Test Cases for Model Decision Coverage

The model you just created is compatible.

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model
contains at least one object that Simulink Design Verifier does not support. You can
analyze a partially compatible model, but, by default, the unsupported objects are
stubbed out. The results of the analysis can be incomplete.

For detailed information about automatic stubbing, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.

Configure Test Generation Options

Configure Simulink Design Verifier to generate test cases that achieve 100% decision
coverage for the ex_generate_test_cases_example model:

7-7



7 Generating Test Cases

1 Open the ex_generate_test_cases_example model.
2 In the model window, select Analysis > Design Verifier > Options.
3 On the left side of the Configuration Parameters dialog box, in the Select tree, click

the Design Verifier category. Under Analysis options, set the Mode option to
Test generation.

4 On the left side of the Configuration Parameters dialog box, in the Select tree, click
the Test Generation category.

5 On the Test Generation pane, set the Model coverage objectives parameter to
Decision.

For this example, the analysis generates test cases that record only decision
coverage.

The Test suite optimization parameter is set by default to CombinedObjectives.
If you want to generate fewer but longer test cases, select LongTestcases for the
Test suite optimization parameter.

6 Click OK to save your changes and close the Configuration Parameters dialog box.
7 Save the ex_generate_test_cases_example model.

Analyze the Example Model

To analyze the ex_generate_test_cases_example model, in the model window,
select Analysis > Design Verifier > Generate Tests > Model. The Simulink Design
Verifier software begins analyzing your model to generate test cases.

During the analysis, the log window shows the progress of the analysis. It displays
information such as the number of test objectives processed and which objectives are
satisfied.

Review Analysis Results

When the software completes its analysis, the log window displays the following options
for reviewing the results.

7-8



 Generate Test Cases for Model Decision Coverage

The following sections describe how you can review the analysis results:

• “Review Analysis Results on the Model” on page 7-10
• “Review Detailed Analysis Report” on page 7-12
• “Review Harness Model” on page 7-13
• “Simulate Tests and Produce a Model Coverage Report” on page 7-14
• “View sldvData File” on page 7-16

7-9



7 Generating Test Cases

• “Review Analysis Results in the Model Explorer” on page 7-16

Review Analysis Results on the Model

Highlight the analysis results on the example model:

1 In the log window for the ex_generate_test_cases_example analysis, click
Highlight analysis results on model.

The Switch block is outlined in green, which indicates that the Switch block has test
cases that satisfy its test objectives.

The Simulink Design Verifier Results window opens. As you click objects in the
model, this window changes to display detailed analysis results for that object. By
default, the Simulink Design Verifier Results window is always the topmost visible
window. To allow the window to move behind other window, click  and clear
Always on top.

7-10



 Generate Test Cases for Model Decision Coverage

2 Click the highlighted Switch block.

The Simulink Design Verifier Results window indicates that the analysis generated
test cases for both test objectives:

• trigger >= threshold

• trigger < threshold

For more information about highlighted analysis results on a model, see “Highlighted
Results on the Model” on page 13-2.

7-11



7 Generating Test Cases

Review Detailed Analysis Report

Create a detailed HTML analysis report:

1 In the Simulink Design Verifier log window, click Generate detailed analysis
report.

The HTML report opens in a browser window.
2 The report includes the following Table of Contents. Click a hyperlink to navigate

to a section in the report.

3 In the Table of Contents, click Summary to display the report's Summary chapter.

The Summary chapter lists information about the model and the status of the
objectives—satisfied or not.

4 In the Table of Contents, click Analysis Information to display the Analysis
Information chapter.

The Analysis Information chapter provides information about:

• The model that you analyzed.
• The options that you specified for the analysis.
• Approximations the software performed during the analysis.

5 In the Table of Contents, click Test Objectives Status to display the report's
Test Objectives Status chapter.

This table indicates that the analysis satisfied both test objectives associated with
the Switch block in the ex_generate_test_cases_example model, for which it
generated two test cases.

6 Under the table Test Case column, click 2 to display the Test Case 2 section.

7-12



 Generate Test Cases for Model Decision Coverage

This section provides details about a test case that the analysis generated to achieve
an objective in your model. This test case achieves test objective 1, when the Switch
block passes its third input to its output port. Specifically, the software determines
that a value of –1 for the Switch block control signal causes the block to pass its third
input as the block output.

For more information about the HTML reports, see “Simulink Design Verifier Reports”
on page 13-27.

Review Harness Model

To create a harness model with test cases that satisfy the test objectives in your model, in
the Simulink Design Verifier log window, click Create harness model.

The software creates a harness model named
ex_generate_test_cases_example_harness.

The Signal Builder block named Inputs contains the test cases. Double-click the Inputs
block to see the test cases. From the Signal Builder block, you can simulate the model
using the test cases and produce a model coverage report, as described in “Simulate Tests
and Produce a Model Coverage Report” on page 7-14.

For more information about the harness model, see “Simulink Design Verifier Harness
Models” on page 13-16.

If Analysis Generates Many Test Cases

If you have a large model, the analysis might produce a harness model that contains a
large number of test cases.

7-13



7 Generating Test Cases

To perform a more efficient analysis and create easier-to-review results:

1 Set the Test suite optimization parameter to LongTestcases.
2 Rerun the analysis.

In the LongTestcases optimization, the analysis generates fewer but longer test cases
that each satisfy multiple test objectives.

Simulate Tests and Produce a Model Coverage Report

To simulate the harness model using the generated test cases in the harness model:

1 In the harness model, double-click the Inputs block to open the Signal Builder dialog
box.

7-14



 Generate Test Cases for Model Decision Coverage

2
In the Signal Builder dialog box, click Run all .

The software simulates the harness model using both test cases, collects
model coverage information, and displays a coverage report. The coverage
report indicates that the test cases record 100% decision coverage for the
ex_generate_test_cases_example model.

7-15



7 Generating Test Cases

You can also simulate the model without creating a harness model. In the Simulink
Design Verifier log window, click Simulate tests and produce a model coverage
report.

For more information about model coverage, see “Top-Level Model Coverage Report”
(Simulink Verification and Validation).

View sldvData File

The Simulink Design Verifier data file is a MAT-file that contains a structure named
sldvData. This structure stores all the data that the analysis gathers and produces
during the analysis. You can use the data file to conduct your own analysis or to generate
a custom report.

To view the data file, click the data file name in the log window, in this example,
ex_generate_test_cases_example_sldvdata.mat. When you click the file name, a
copy of the sldvData object is instantiated in the MATLAB workspace so that you can
review and manipulate the data.

For more information about Simulink Design Verifier data files, see “Simulink Design
Verifier Data Files” on page 13-9.

Review Analysis Results in the Model Explorer

As long as your model remains open, you can view the results of your most recent
Simulink Design Verifier analysis in the Model Explorer.

In the Simulink Editor, select Analysis > Design Verifier  > Results > Active. The
Model Explorer opens. The results of the latest Simulink Design Verifier analysis appear
in the right-hand pane.

For any Simulink Design Verifier analysis, from the Model Explorer, you can perform the
following tasks.

Task For more information

Highlight the analysis results on the
model.

“Highlighted Results on the Model” on page
13-2

Generate a detailed analysis report. “Simulink Design Verifier Reports” on page
13-27

Create the harness model, or if the harness
model already exists, open it.

“Simulink Design Verifier Harness Models”
on page 13-16

7-16



 Generate Test Cases for Model Decision Coverage

Task For more information

If no test cases were generated during the
analysis, this option is not available.
View the data file. “Simulink Design Verifier Data Files” on

page 13-9
View the log file. “Simulink Design Verifier Log Files” on

page 13-50

After you close your model, you can no longer view analysis results.

Customize Test Generation

You can use the Test Condition block to constrain signals in your model to certain values
during the analysis.

1 At the MATLAB command prompt, enter sldvlib to display the Simulink Design
Verifier library.

2 Open the Objectives and Constraints sublibrary.
3 Copy the Test Condition block to your model by dragging it from the Simulink

Design Verifier library to your model window.
4 In the model window, insert the Test Condition block between the Inport and Switch

blocks.

5 Double-click the Test Condition block to access its attributes.

The Test Condition block parameters dialog box opens.

7-17



7 Generating Test Cases

6 In the Values box, enter [-0.1, 0.1]. When generating test cases for this model,
the analysis constrains the signal values, entering the Switch block control port to
the specified range.

7 Click OK to save your changes and close the Test Condition block parameters dialog
box.

8 Save your model as ex_generate_test_cases_with_tc_block and keep it open.

7-18



 Generate Test Cases for Model Decision Coverage

Reanalyze the Example Model

Analyze the ex_generate_test_cases_with_tc_block model with the Test
Condition block. To observe how the Test Condition block affects test generation,
compare the result of this analysis to the result that you obtained in “Analyze Example
Model” on page 5-14.

1 In the model window, select Analysis > Design Verifier > Generate Tests >
Model.

The Simulink Design Verifier software displays a log window and begins analyzing
your model to generate test cases. When the software completes the analysis, the log
window displays the options for reviewing the results.

2 In the Simulink Design Verifier log window, click Generate detailed analysis
report.

3 To begin reviewing the report, in the Table of Contents, click Summary.

The Summary chapter indicates that Simulink Design Verifier satisfied two test
objectives in the model.

4 In the Table of Contents, click Analysis Information. Scroll to the bottom of
this chapter, to the Constraints section.

This section lists the Test Condition block that you added to constrain the value of
the Switch block control signal to the interval [–0.1, 0.1].

5 In the Table of Contents, click Test Objectives Status.

This table indicates that Simulink Design Verifier satisfied both test objectives for
the Switch block through the two test cases generated.

6 Under the table Test Case column, click 1.

This section provides details about a test case that the software generated to
achieve an objective in your model. This test case achieves test objective 1, when the
Switch block passes its third input to its output port. Although the Test Condition
block restricts the domain of input signals to the interval [–0.1, 0.1], the software
determines that a value of –0.1 for the Switch block control signal satisfies this
objective.

7 To confirm that the test case achieves 100% decision coverage, open the harness
model.

8 Double-click the Inputs block to open the Signal Builder dialog box.

7-19



7 Generating Test Cases

9
In the Signal Builder dialog box, click Run all .

The Simulink software simulates the harness model using both test cases, collects
model coverage information, and displays a coverage report. The Summary section of
the report indicates that Simulink Design Verifier generated test cases that achieve
complete decision coverage for your example model.

Analyze Contradictory Models

If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and cannot analyze
the model.

You can have a contradiction if your model has Test Objective blocks with incorrect
parameters. For example, a contradiction can be an objective that states that a signal
must be between 0 and 5 when the signal is the constant 10.

If the software detects a contradiction, all previous results are invalidated and the
software reports that some of the objectives cannot be satisfied.

7-20



 Use Test Generation Advisor to Identify Analyzable Components

Use Test Generation Advisor to Identify Analyzable Components

In this section...

“Test Generation Advisor” on page 7-21
“Test Generation Advisor Requirements” on page 7-23
“Identify Analyzable Components” on page 7-23
“Analyze and Generate Tests for Model Components” on page 7-23
“Manually Select Components for Testing” on page 7-26

Test Generation Advisor

You can use the Test Generation Advisor to select model components (atomic subsystems
and model blocks) for test generation. The Test Generation Advisor summarizes test
generation compatibility, condition and decision objectives, and dead logic for the model
and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection.
You can use the results to better understand your model before test generation,
particularly for large models, complex models, or models for which you are uncertain of
the test generation compatibility. For example, you can:

• Identify components that are incompatible with test case generation.
• Identify complex components that may be time-consuming to analyze.
• Determine instances of dead logic.
• Get a snapshot of the component hierarchy.
• Get recommended test generation parameters.

7-21



7 Generating Test Cases

The Test Generation Advisor classifies components as analyzable, complex, or
incompatible.

• Analyzable components are compatible with Simulink Design Verifier. The
preliminary analysis indicates that Simulink Design Verifier might achieve high
component coverage.

• Complex components are also compatible with Simulink Design Verifier. However,
the preliminary analysis indicates that Simulink Design Verifier might require more
time and resources to achieve high component coverage due to component complexity
or other factors. For more information, see “Sources of Model Complexity” on page
14-2.

• You cannot generate tests for incompatible components. For more information, see
“Check Model Compatibility” on page 3-2.

The results summary displays specific information about the model and each component:

• Status: The compatibility or complexity
• Objectives: The number of condition and decision objectives
• Dead Logic Detected: The number of instances of dead logic decided during the

analysis. This might not include every instance of dead logic.

7-22



 Use Test Generation Advisor to Identify Analyzable Components

• Objectives Decided: The percentage of condition and decision objectives determined
by test cases and dead logic.

Test Generation Advisor Requirements

For analysis, your model must compile. Also, if you change the model name, you must
reload the model and reopen the Test Generation Advisor.

Identify Analyzable Components

To analyze your model using the Test Generation Advisor, follow this high-level
workflow:

1 Open your model.
2 From the menu bar, click Analysis > Design Verifier > Generate Tests >

Advisor.
3 Your model compiles, and the Test Generation Advisor opens. It displays the model

hierarchy and summary table.
4 Enter a time value for Seconds per component, which limits the analysis time

per component. This value does not include time for other operations such as
compilation.

5 Run the analysis by clicking the Start Analysis button . Track the analysis using
the progress indicator.

6 Determine incompatibilities, complexities and characteristics from the component
hierarchy tree and the results summary.

7 Trace from the summary to the model using the component hyperlinks.

Analyze and Generate Tests for Model Components

This example demonstrates analysis and test generation using the Test Generation
Advisor. The example model has analyzable and incompatible subsystems.

1 At the command line, enter fuelsys to open the fuelsys model.
2 Save a copy of the model in a writable location on the MATLAB path.
3 Click Analysis > Design Verifier > Generate Tests > Advisor to open the Test

Generation Advisor.

7-23



7 Generating Test Cases

4 In the Seconds per component text box, enter 25.
5 Click the Start Analysis button  to begin the model analysis.
6 After the analysis is complete, the component tree displays results for the overall

model and each component.

7-24



 Use Test Generation Advisor to Identify Analyzable Components

7 Highlight the control logic subsystem in the component hierarchy. The analysis
was partial, in that it determined 87% of the objectives for control logic by test
cases and dead logic. To load the test generation summary, click the Show test
generation results summary link.

At the bottom of the summary, the table lists recommended test generation
parameters.

7-25



7 Generating Test Cases

8 Click the Component name hyperlink. Simulink traces to the control logic
Stateflow chart.

9 Generate the full set of tests for the subsystem. In the Test Generation Advisor
summary for control logic, click Extract this component and generate tests.

Manually Select Components for Testing

If you know which model components that you want to test, you can manually select
these components. Break down the model into components of 100–1000 objectives each.
Use the sldvextract function to extract components into a new model. You can then
analyze the individual components, starting with the lowest-level subsystems.

7-26



 Model Coverage Objectives for Test Generation

Model Coverage Objectives for Test Generation

In this section...

“Decision” on page 7-27
“Condition” on page 7-27
“MCDC” on page 7-28
“Relational Boundary” on page 7-28

Decision

Decision coverage in Simulink Design Verifier examines blocks and Stateflow states that
represent decision points in a model. For instance, the Switch block involves the decision
about whether the control input is greater than a threshold value. For more information,
see “Model Objects That Receive Coverage” (Simulink Verification and Validation) in
Simulink Verification and Validation documentation.

To enable decision coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select one of the following:

• Decision

• Condition Decision

• MCDC

For each decision in your model, Simulink Design Verifier generates test cases that
satisfy the coverage objective. For more information, see “Decision Coverage (DC)”
(Simulink Verification and Validation) in Simulink Verification and Validation
documentation.

Condition

Condition coverage examines blocks that output the logical combination of their inputs
and Stateflow transitions. For more information, see “Model Objects That Receive
Coverage” (Simulink Verification and Validation) in Simulink Verification and Validation
documentation.

To enable condition coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select one of the following:

7-27



7 Generating Test Cases

• Condition Decision

• MCDC

For each input to a logical block and each condition in a transition, Simulink Design
Verifier generates test cases that satisfy the coverage objective. For more information,
see “Condition Coverage (CC)” (Simulink Verification and Validation) in Simulink
Verification and Validation documentation. .

MCDC

Modifier condition/decision coverage examines blocks that output the logical combination
of their inputs and Stateflow transitions. For more information, see “Model Objects That
Receive Coverage” (Simulink Verification and Validation) in Simulink Verification and
Validation documentation.

To enable condition MCDC coverage, under Design Verifier > Test Generation, for
Model coverage objectives, select MCDC.

For each input to a logical block and each condition in a transition, Simulink Design
Verifier generates test cases that satisfy the coverage objective. For more information,
see “MCDC Coverage for Stateflow Charts” (Simulink Verification and Validation) in
Simulink Verification and Validation documentation.

For information on how MCDC test generation in Simulink Design Verifier can deviate
from MCDC coverage recorded by Simulink Verification and Validation, see “Modified
Condition and Decision Coverage in Simulink Design Verifier” on page 9-15.

Relational Boundary

Relational boundary coverage examines blocks that have an explicit or implicit relational
operation and Stateflow transitions. For more information, see “Model Objects That
Receive Coverage” (Simulink Verification and Validation) in Simulink Verification
and Validation documentation. Test generation for relational boundary coverage is not
supported for If and Fcn blocks.

To enable relational boundary coverage, under Design Verifier > Test Generation,
select Include relational boundary objectives.

For each relational operation in the model, Simulink Design Verifier generates test cases
that satisfy the coverage objective. For more information, see “Relational Boundary

7-28



 Model Coverage Objectives for Test Generation

Coverage” (Simulink Verification and Validation) in Simulink Verification and Validation
documentation.

7-29





8

Extending Existing Test Cases

• “When to Extend Existing Test Cases” on page 8-2
• “Common Workflow for Extending Existing Test Cases” on page 8-4
• “Extend Test Cases for Model with Temporal Logic” on page 8-5
• “Extend Test Cases for Closed-Loop System” on page 8-12
• “Extend Test Cases for Modified Model” on page 8-19



8 Extending Existing Test Cases

When to Extend Existing Test Cases

The Simulink Design Verifier software can analyze your model using previously
generated test cases that you specify. You can use this feature in the following situations:

• You encounter delays trying to analyze your model, or you see incomplete results.
This can happen if your model has any of the following characteristics:

• Temporal logic
• Large counters
• Model objects that are difficult to test due to complex or nonlinear logic

Analyzing the model and considering the existing test cases allows you to focus the
analysis on those parts of the model that are difficult to analyze. You can combine the
generated test cases to create a complete test suite for the full model.

For an example of extending existing test cases for a model that uses temporal logic,
see “Extend Test Cases for Model with Temporal Logic” on page 8-5.

• You have a closed-loop simulation model that uses a Model block to include the
controller. First, log the data from the Model block and then analyze the model
referenced by the Model block. Using this technique, the test cases for the controller
can realistically reflect the continuous time behavior expected in the closed-loop
system.

For an example of extending existing test cases for a closed-loop system, see “Extend
Test Cases for Closed-Loop System” on page 8-12.

• You change an existing model for which you have already generated test cases . In
this situation, you can reanalyze the model, omitting the analysis results from the
original version of the model. The combined test cases give you a complete test suite
for the new model.

For an example of extending existing test cases for modified models, see “Extend Test
Cases for Modified Model” on page 8-19.

Note: When you configure Simulink Design Verifier to treat parameters as variables in
its analysis, you cannot also use the analysis to extend existing test cases. In Analysis
> Design Verifier > Options, if you specify your model to extend existing test cases
with a Data file and apply parameter configurations with a Parameter configuration
file, when you attempt to perform Simulink Design Verifier analysis, the software

8-2



 When to Extend Existing Test Cases

reports that your model is incompatible. This occurs because the existing test cases do
not include corresponding parameter values.

8-3



8 Extending Existing Test Cases

Common Workflow for Extending Existing Test Cases

Use the following workflow for extending existing test cases during a test-generation
analysis:

• Create the starting test cases.
• Log the starting test cases.
• Extend the existing test cases during test-generation analysis.
• Verify that you have created a complete test suite.

The examples in this category use some or all of these tasks when extending existing test
cases during analysis.

8-4



 Extend Test Cases for Model with Temporal Logic

Extend Test Cases for Model with Temporal Logic

In this section...

“Create Starting Test Case” on page 8-5
“Log Starting Test Case” on page 8-8
“Extend Existing Test Cases” on page 8-9
“Verify Analysis Results” on page 8-11

Create Starting Test Case

This example uses the sldvdemo_sbr_extend_design model. This model includes a
Stateflow chart SBR that uses temporal logic. The transition from the KEY_OFF state to
the KEY_ON state occurs after the Stateflow chart has been simulated 500 times. To test
this transition requires a test case with 500 time steps.

In this example, you create a test case that forces the transition to KEY_ON by setting the
KEY input to 1 for the duration of the test case. You simulate the model using this test
case, satisfying the objectives for the KEY_OFF/KEY_ON transition. Then you analyze the
model, ignoring the objectives already satisfied by the test case you create.

1 Open the example model:

sldvdemo_sbr_extend_design

2 Open the SBR Stateflow chart to see the KEY_OFF/KEY_ON transition.

3 Create a model reference harness model:
[~, harnessModelFilePath] = ...

    sldvmakeharness('sldvdemo_sbr_extend_design',[],[],true);

The harness model, sldvdemo_sbr_extend_design_harness, includes:

8-5



8 Extending Existing Test Cases

• A Model block named Test Unit that references the original model,
sldvdemo_sbr_extend_design.

• A Signal Builder block named Inputs that contains the test-case inputs to the
model referenced in the Model block.

Initially, the Signal Builder block contains only the default test case, with all
three inputs set to 0.

• A DocBlock block named Test Case Explanation that documents the test case.

Initially, the Test Case Explanation block does not have any content for the
default test case.

4 sldvmakeharness returns the path to the harness model file in
harnessModelFilePath. Extract the name of the harness model file into
harnessModel, for later use:

[~, harnessModel] = fileparts(harnessModelFilePath);

8-6



 Extend Test Cases for Model with Temporal Logic

In order to analyze the KEY_OFF to KEY_ON state transition, create a test case that
makes the transition to the KEY_ON state in 500 time steps:

1 Open the Signal Builder dialog box for the harness model.
2 Select Axes > Change Time Range.
3 The Signal Builder's time range determines the span of time over which its output is

explicitly defined. In the Set the total time range dialog box, set the Max time field
to 5 seconds, creating 500 time steps of 0.01 seconds duration each.

4 Set the KEY input to 1 for the duration of this starting test case, forcing the
transition to the KEY_ON state. Selecting the Inputs.KEY signal requires two clicks.
First, click the signal so that dots appear at both ends of the signal.

5 Click the Inputs.KEY signal again. The Signal Builder thickens the signal to
indicate that it is selected.

6 At the bottom of the Signal Builder dialog box, under Left Point, enter 1 for Y.
7 Press Enter to apply the change.

The Inputs.KEY signal is set to 1 for the duration of the test case.

8-7



8 Extending Existing Test Cases

8 Close the Signal Builder dialog box.

Log Starting Test Case

The next step is to log the starting test case that you created. You can then specify
that Simulink Design Verifier ignore the objectives satisfied by that test case when
performing an analysis.

The sldvlogsignals function records the test case data in a MAT-file that contains
an sldvData structure. This structure stores all the data that the software gathers and
produces during the analysis.

To log the starting test cases:

1 Save the name of the Model block in the harness model that references the
sldvdemo_sbr_extend_design model:

[~, modelBlock] = find_mdlrefs(harnessModel, false);

2 Simulate the model referenced by the Model block using the new test case, and log
the input signals in the workspace variable loggeddata:

loggeddata = sldvlogsignals(modelBlock{1});

3 Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'loggeddata');

You will specify this file when you analyze the sldvdemo_sbr_extend_design
model.

8-8



 Extend Test Cases for Model with Temporal Logic

Extend Existing Test Cases

You can now analyze the sldvdemo_sbr_extend_design model and specify that the
analysis extend the test cases already satisfied. The analysis uses the existing test-
case data as a starting point, and does not try to generate test cases for the KEY_OFF to
KEY_ON transition in the SBR Stateflow chart.

Specify the starting test case and analyze the model:

1 In the model window for sldvdemo_sbr_extend_design, select Analysis >
Design Verifier > Options.

2 In the Configuration Parameters dialog box, in the Select tree, under Design
Verifier, select Test Generation.

3 On the Test Generation pane, under Existing test cases, select Extend existing
test cases.

4 In the Data file field, enter the name of the MAT-file that contains the logged data:

existingtestcase.mat

5 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the software includes the starting test case in the final
test suite. You will see that the complete test suite achieves 100% model coverage.

6 To close the Configuration Parameters dialog box, click OK.
7 Save the sldvdemo_sbr_extend_design model on the MATLAB path with the

name sldvdemo_sbr_extend_design_test.
8 In the Model Editor, select Analysis > Design Verifier > Generate Tests >

Model.

The log window first lists the objectives that the starting test case satisfied.

8-9



8 Extending Existing Test Cases

The log window then lists the objectives generated beyond the starting test case.

8-10



 Extend Test Cases for Model with Temporal Logic

Verify Analysis Results

To make sure that this analysis creates a complete test suite, generate the harness model
so you can simulate the model with the generated test cases:

1 In the log window, click Create harness model.
2 In the harness model sldvdemo_sbr_extend_design_test_harness, open the

Signal Builder block named Inputs.
3 To simulate the model using all the test cases, click the Run all and produce

coverage button .

When the simulation is complete, the model coverage report is displayed.
4 View the coverage information for the sldvdemo_sbr_extend_design_test

model to see that the complete test suite achieves 100% coverage.

8-11



8 Extending Existing Test Cases

Extend Test Cases for Closed-Loop System

In this section...

“Log Starting Test Case” on page 8-12
“Extend Existing Test Cases” on page 8-15

Suppose that you have a model with a closed-loop controller in a model referenced by
a Model block. You do not record 100% coverage for the referenced model. Extending
existing test cases can help you achieve 100% coverage. The Simulink Design Verifier
software adds time steps to the existing test cases when analyzing the controller
implemented by the referenced model. The test cases that result from the analysis
realistically reflect the continuous time behavior expected in the closed-loop controller.

A closed-loop controller passes instructions to the controlled system and receives
information from the environment as the control instructions execute. The controller can
adapt and change its instructions as it receives this information.

Log Starting Test Case

This example uses the sldemo_mdlref_basic model. The CounterA Model block
references the model sldemo_mdlref_counter. When you simulate the parent
model, sldemo_mdlref_basic, and collect coverage, you record only 75% coverage for
sldemo_mdlref_counter. Log the data from the simulation and extend those test cases
to achieve 100% coverage for the referenced model.

1 Open the example model:

sldemo_mdlref_basic

2 In the Simulink Editor, select Analysis > Coverage > Settings.
3 In the Coverage pane of the Configuration Parameters, select Enable coverage

analysis.
4 Select Referenced Models

Note that the analysis records coverage only for referenced models with Simulation
mode set to Normal, SIL, or PIL. In sldemo_mdlref_basic, the CounterC Model
block has Simulation mode set to Accelerator, so you cannot record coverage for
it.

8-12



 Extend Test Cases for Closed-Loop System

5 Under Coverage metrics, set the structural coverage level to Modified Condition
Decision (MCDC) to record decision, condition, and modified condition/decision
coverage.

6 Click OK.
7 Simulate the model.

When the simulation completes, the generated coverage report opens in a browser
window. The report shows the following coverage results for the referenced model:

• Condition: 50% (2/4) condition outcomes
• Decision: 25% (1/4) decision outcomes
• MCDC: 0% (0/2) conditions reversed the outcome

The coverage results are also highlighted in the referenced model,
sldemo_mdlref_counter. You can select individual model objects to view specific
coverage results in the Coverage dialog box, as shown in the following screenshot.

8-13



8 Extending Existing Test Cases

8 To log the input signals for the CounterA Model block in sldemo_mdlref_basic
during simulation, at the MATLAB command prompt, enter the following code:

8-14



 Extend Test Cases for Closed-Loop System

logged_data = sldvlogsignals('sldemo_mdlref_basic/CounterA');

9 Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'logged_data');

When you analyze the model referenced in CounterA (sldemo_mdlref_counter) to
extend existing test cases, you specify this MAT-file.

Extend Existing Test Cases

Analyze the sldemo_mdfref_counter model, specifying that the analysis extend the
test cases already satisfied:

1 To open the sldemo_mdfref_counter model, in the sldemo_mdlref_basic
model, double-click the CounterA Model block.

2 In the Simulink Editor, select Analysis > Design Verifier > Options.
3 In the Configuration Parameters dialog box, on the Select pane, under Design

Verifier, select Test Generation.
4 On the Test Generation pane, in the Model coverage objectives box, select

MCDC.
5 Under Existing test cases, select Extend existing test cases.
6 In the Data file field, specify the name of the MAT-file that contains the logged

data, in this case, existingtestcase.mat.
7 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the software includes the test cases recorded in the file
existingtestcase.mat in the final test suite.

8 Click OK.
9 In the Simulink Editor, select Analysis > Design Verifier > Generate Tests >

Model.

The analysis first loads the objectives satisfied by the logged test cases. Then it adds
extra time steps to those test cases and tries to satisfy any missing objectives. When
the analysis completes, the Simulink Design Verifier log window opens and indicates
that all 12 objectives are satisfied.

10 To view the analysis results on the model, in the Simulink Design Verifier log
window, select Highlight analysis results on model.

8-15



8 Extending Existing Test Cases

The Simulink Design Verifier results are highlighted in the referenced model,
sldemo_mdlref_counter. You can select individual model objects to view specific
analysis results in the Simulink Design Verifier Results dialog box, as shown in the
following screenshot.

8-16



 Extend Test Cases for Closed-Loop System

8-17



8 Extending Existing Test Cases

11 To verify the results of the analysis and review the generated test cases, in the
Simulink Design Verifier log window, select Generate detailed analysis report.

12 To collect model coverage using the extended test suite, in the Simulink Design
Verifier log window, select Simulate tests and produce a model coverage
report.

When the simulation completes, the generated coverage report opens in a browser
window. The report now shows the following coverage results for the referenced
model sldemo_mdlref_counter:

• Condition: 100% (4/4) condition outcomes
• Decision: 100% (4/4) decision outcomes
• MCDC: 100% (2/2) conditions reversed the outcome

8-18



 Extend Test Cases for Modified Model

Extend Test Cases for Modified Model

In this section...

“Create Starting Test Cases” on page 8-19
“Extend Existing Test Cases” on page 8-20

Suppose that you have a model that you have already analyzed using Simulink Design
Verifier, and you modify the model. The original test suite may not record 100% coverage
for the modified model. Reanalyze the modified model to make sure that it satisfies
all the new test objectives. Instead of reanalyzing the entire model, you focus the new
analysis on just the modified part of the model. In this way, you leverage the test cases
created for the original model, extending them to satisfy any new objectives.

This example uses the sldvdemo_cruise_control model. You analyze the
model and generate test cases. Then you analyze a modified version of that model,
sldvdemo_cruise_control_mod, extending the test cases from the original analysis.
The analysis returns a complete test suite for the new model.

Create Starting Test Cases

Analyze the sldvdemo_cruise_control model and generate test cases that achieve
100% coverage.

1 Open the example model:

sldvdemo_cruise_control

2 To start a Simulink Design Verifier analysis for the sldvdemo_cruise_control
model, double-click the Run Simulink Design Verifier block:

The analysis satisfies 34 test objectives for the sldvdemo_cruise_control model.
The software stores the resulting data file in a subfolder of the MATLAB Current
Folder:

8-19



8 Extending Existing Test Cases

sldv_output\sldvdemo_cruise_control\sldvdemo_cruise_control_sldvdata.mat

In the next section, when you analyze the modified model, this data file specifies the
starting test cases that you extend.

3 Close the sldvdemo_cruise_control model and all the files created by the
analysis. If asked, do not save any changes you made to the model.

Extend Existing Test Cases

The sldvdemo_cruise_control_mod model is a modified version of
sldvdemo_cruise_control. The Controller subsystem contains a Saturation block
that specifies that the target speed cannot exceed 70.

Open the modified model and analyze it, extending the test cases that you generated
when analyzing the sldvdemo_cruise_control model:

1 Open the example model, the modified version of sldvdemo_cruise_control:

sldvdemo_cruise_control_mod

2 Double-click the Controller subsystem to see the change to the original model, a
Saturation block that specifies the maximum speed:

3 Close the Controller subsystem.
4 Select Analysis > Design Verifier > Options.
5 In the Configuration Parameters dialog box, on the Select pane, under Design

Verifier , select Test Generation.
6 On the Test Generation pane, under Existing test cases, select Extend existing

test cases.
7 In the Data file field, click Browse and navigate to the MAT-file created in the

MATLAB Current Folder when analyzing the original model:

8-20



 Extend Test Cases for Modified Model

sldv_output\sldvdemo_cruise_control\sldvdemo_cruise_control_sldvdata.mat

8 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the analysis includes the test cases recorded in the file
sldvdemo_cruise_control_sldvdata.mat in the final test suite.

9 Click Apply to save these settings.
10 To open the main Design Verifier pane, in the Select tree, click Design Verifier.
11 To start the analysis, click Generate Tests.

The analysis first loads the 34 objectives satisfied by the initial test cases. Then it
adds extra time steps to those test cases and tries to satisfy any missing objectives.

12 In the log window, click Generate detailed analysis report.

The analysis satisfied a total of 38 satisfied objectives for the
sldvdemo_cruise_control_mod model. The analysis satisfied four additional
objectives that correspond to the Saturation block.

8-21





9

Achieving Test Cases for Missing
Model Coverage

• “Generate Test Cases for Missing Coverage Data” on page 9-2
• “Achieve Missing Coverage in Referenced Model” on page 9-3
• “Missing Coverage in Subsystems and Model Blocks” on page 9-11
• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-12
• “Modified Condition and Decision Coverage in Simulink Design Verifier” on page

9-15



9 Achieving Test Cases for Missing Model Coverage

Generate Test Cases for Missing Coverage Data

If you simulate your model and record coverage data, but your model does not achieve
100% coverage, Simulink Design Verifier can find test cases that achieve the missing
coverage. The software targets the test-generation analysis for the part of the model
that is missing coverage, ignoring the model coverage data that was recorded during
simulation.

The following examples describe how to focus the test-generation analysis on a part of
the model that did not achieve 100% coverage:

• “Achieve Missing Coverage in Referenced Model” on page 9-3
• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-12

9-2



 Achieve Missing Coverage in Referenced Model

Achieve Missing Coverage in Referenced Model

If you simulate a referenced model that does not achieve full coverage, you can use
Simulink Design Verifier to generate test cases that achieve full coverage. There are two
approaches:

• Programmatically achieve missing coverage: Generate test cases for a referenced
model with APIs for test-generation analysis.

• Incrementally increase coverage: Generate test cases for the test harness model with
missing coverage analysis features.

Programmatically Achieve Missing Coverage in Referenced Model

• “Record Coverage Data for Example Model” on page 9-3
• “Find Test Cases for the Missing Coverage” on page 9-5
• “Achieve Missing Coverage” on page 9-5
• “Verify Complete Model Coverage” on page 9-6

This example model uses a referenced model that does not achieve full coverage.
When you run a test-generation analysis on the referenced model and combine it with
previously recorded coverage data, you can achieve 100% coverage for the referenced
model.

Record Coverage Data for Example Model

Simulate the example model. Record condition, decision, and MCDC coverage.

1 Open the example model:

sldemo_mdlref_basic

The Model blocks CounterA, CounterB, and CounterC reference the model
sldemo_mdlref_counter.

2 In the Simulink Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, set the following

options:

• Select Enable coverage analysis.

9-3



9 Achieving Test Cases for Missing Model Coverage

• Select Referenced Models.
• Click Select Models. In the Select Models for Coverage Analysis dialog box,

select the check box for the referenced model sldemo_mdlref_counter. Click
OK.

The check box for sldemo_mdlref_counter becomes visible, corresponding
to CounterA and CounterB. Coverage is not enabled for CounterC because the
reference model CounterC is in Accelerator simulation mode.

• Specify which types of coverage to record during simulation. Under Coverage
metrics, select MCDC.

4 In the Coverage > Results pane of the Configuration Parameters. Set the following
options:

• Select Save last run in workspace variable to save the collected coverage data
from the most recent simulation run in a variable in the MATLAB workspace.

• Select Generate report automatically after analysis to specify that the
simulation create a coverage report.

• In the cvdata object name field, enter covdata_original to specify a unique
name for the coverage data workspace variable.

5 Click OK.
6 To record the coverage data, start the simulation of the sldemo_mdlref_basic

model.

After the simulation, the coverage report opens. The report indicates that the
following coverage is achieved for the referenced model sldemo_mdlref_counter:

• Decision: 25%
• Condition: 50%
• MCDC: 0%

The simulation saves the coverage data in the MATLAB workspace variable
covdata_original, a cvdata object that contains the coverage data.

7 Save the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata_original);

Keep the model open as you continue through this example.

9-4



 Achieve Missing Coverage in Referenced Model

Find Test Cases for the Missing Coverage

To achieve 100% coverage for the sldemo_mdlref_counter model, run a test-
generation analysis that uses the existing coverage data.

1 Open the referenced model. At the command line, enter:

open_system('sldemo_mdlref_counter');

2 Create an sldvoptions object:

opts = sldvoptions;

When you create the sldvoptions object, specify:

• That the analysis ignores satisfied coverage data.
• The file name containing the satisfied coverage data (existingcov.cvt)

Enter the following commands to specify these options:

opts.IgnoreCovSatisfied = 'on';

opts.CoverageDataFile = 'existingcov.cvt';

3 Analyze the referenced model, sldemo_mdlref_counter, by using the specified
options:
[status, fileNames] = sldvrun('sldemo_mdlref_counter',opts,true);

The Simulink Design Verifier analysis satisfies seven objectives and creates one test
case for the referenced model.

The next procedure simulates the referenced model, sldemo_mdlref_counter, with the
test case that the analysis created.

Achieve Missing Coverage

To achieve the missing coverage for the referenced model, sldemo_mdlref_counter,
simulate the model by using the test case from the Simulink Design Verifier analysis.

1 Open the referenced model. At the command line, enter:

open_system('sldemo_mdlref_counter');

2 Create a cvtest object for the simulation and specify recording decision, condition,
and MCDC coverage.

cvt = cvtest('sldemo_mdlref_counter');

9-5



9 Achieving Test Cases for Missing Model Coverage

cvt.settings.decision = 1;

cvt.settings.condition = 1;

cvt.settings.mcdc = 1;

3 Specify recording coverage and set the name of the cvtest object.

runOpts = sldvruntestopts;

runOpts.coverageEnabled = true;

runOpts.coverageSetting = cvt;

4 Simulate the model with the cvtest object, cvt, and the test case, as defined in
fileNames.DataFile. Save the recorded coverage data in the workspace variable
covdata_missing.
[~, covdata_missing] = sldvruntest('sldemo_mdlref_counter', fileNames.DataFile, runOpts);

Verify Complete Model Coverage

You saved the coverage data from the simulation of the top-level model,
sldemo_mdlref_basic, in the workspace variable covdata_original. To create
a report that combines the coverage data from the top-level model with the missing
coverage data from the referenced model, sldemo_mdlref_counter, enter the following
command:

cvhtml('Coverage Summary', covdata_original, covdata_missing);

The report shows that by analyzing the referenced model and using those results to
record coverage, you can achieve 100% decision, condition, and MCDC coverage.

Increase Coverage for Referenced Models in a Test Harness

• “Generate Test Harness Model and Record Coverage Data” on page 9-7
• “Generate Test Cases for the Missing Coverage” on page 9-8
• “Update Simulink Design Verifier Analysis Options” on page 9-10
• “View Active Results for Missing Coverage Analysis” on page 9-10
• “Limitations” on page 9-10

You can incrementally achieve full coverage for a generated test harness model. This
example shows how to first generate a test harness model that does not achieve full

9-6



 Achieve Missing Coverage in Referenced Model

coverage. Next, it shows how to run missing coverage analysis on the test harness model
to generate test cases for 100% coverage.

Note: This approach supports only test harness models generated by Simulink Design
Verifier that reference the input model. For more information see, “Reference input
model in generated harness” on page 15-80.

Generate Test Harness Model and Record Coverage Data

To achieve full coverage for the sldemo_mdlref_counter model, run a missing
coverage analysis on the Simulink Design Verifier generated harness model.

1 Open the example model:

open_system('sldemo_mdlref_counter');

2 Create a harness model for referenced model sldemo_mdlref_counter:

[savedHarnessFilePath] = sldvmakeharness('sldemo_mdlref_counter');

For more information about the harness model, see “Simulink Design Verifier
Harness Models” on page 13-16.

3 In the harness model sldemo_mdlref_counter_harness, the Format parameter
must be Dataset to make the referenced model sldemo_mdlref_counter and
the harness model sldemo_mdlref_counter_harness have the same parameter
settings. For more information see, “Model Configuration Parameters: Data Import/
Export” (Simulink).

4 Simulate the sldemo_mdlref_counter_harness model to record the coverage
achieved by the test cases in the harness model. After the simulation, the coverage
report appears. The report indicates that the following coverage is achieved for
sldemo_mdlref_counter:

9-7



9 Achieving Test Cases for Missing Model Coverage

Generate Test Cases for the Missing Coverage

1 Open the harness model:

open_system('sldemo_mdlref_counter_harness');

To generate test cases for the missing coverage, in the Simulink Editor, select
Analysis > Design Verifier > Generate Tests > Missing Coverage. A
notification indicates the number of new tests that are added.

2 The Signal Builder dialog box shows the Missing coverage test case 1 added to
the previous Test Case 1.

9-8



 Achieve Missing Coverage in Referenced Model

3
In the Signal Builder dialog box, click Run all . The software simulates the
harness model by using all the test cases, collects model coverage information, and
displays a coverage report. The coverage report indicates that the missing coverage
analysis records 100% coverage for sldemo_mdlref_counter.

9-9



9 Achieving Test Cases for Missing Model Coverage

Update Simulink Design Verifier Analysis Options

1 Open the harness model. At the command line, enter:

open_system('sldemo_mdlref_counter_harness');

In the Simulink Editor, select Analysis > Design Verifier > Options
(sldemo_mdlref_counter). The Configuration Parameters dialog box for referenced
model sldemo_mdlref_counter opens. You can set design verifier options for
missing coverage analysis. For more information see, “Options in Configuration
Parameters Dialog Box” on page 15-2.

View Active Results for Missing Coverage Analysis

1 Open the referenced model. At the command line, enter:

open_system('sldemo_mdlref_counter');

To view active results for missing coverage test cases, in the Simulink Editor, select
Analysis > Design Verifier > Results > Active. The Results Summary window
opens with the missing coverage analysis results. For more information on active
results, see “Review Analysis Results” on page 13-52. The missing coverage test
cases data is stored in a MAT-file that contains a structure named sldvData. For
more information see, “Contents of sldvData Structure” on page 13-9.

Limitations

1 Missing Coverage analysis is a user interface-based workflow. Command-line
functions are not available for Missing Coverage analysis.

2 Constraining values for parameters is not supported in the Missing Coverage
analysis workflow. For more information see, “Define Constraint Values for
Parameters” on page 5-4.

9-10



 Missing Coverage in Subsystems and Model Blocks

Missing Coverage in Subsystems and Model Blocks

If your model has a Subsystem block that does not achieve full coverage, you can convert
it to model referenced in a Model block. “Convert a Subsystem to a Referenced Model”
(Simulink) describes how to convert a subsystem to a referenced model. You can then
follow the steps described in “Achieve Missing Coverage in Referenced Model” on page
9-3.

You cannot convert some subsystems to Model blocks. To test a
subsystem to see if you can convert it to a Model block, use the
Simulink.SubSystem.convertToModelReference function. If that function cannot
convert the subsystem, an error message describes why the conversion failed.

It is possible that you have a Stateflow chart or a MATLAB Function block that does not
achieve full coverage. You cannot convert Stateflow charts and MATLAB Function blocks
to referenced models.

When you cannot use aModel block, follow the steps described in “Achieve Missing
Coverage in Closed-Loop Simulation Model” on page 9-12.

9-11



9 Achieving Test Cases for Missing Model Coverage

Achieve Missing Coverage in Closed-Loop Simulation Model

In this section...

“Record Coverage Data for the Model” on page 9-12
“Find Test Cases for Missing Coverage” on page 9-13

If you have a subsystem or a Stateflow chart that does not achieve 100% coverage, and
you do not want to convert the subsystem or chart to a Model block, follow this example
to achieve full coverage.

The example uses a closed-loop controller model. A closed-loop controller passes
instructions to the controlled system and receives information from the environment
as the control instructions are executed. The controller can adapt and change its
instructions as it receives this information.

The sldvdemo_autotrans model is a closed-loop simulation model. The ShiftLogic
Stateflow chart represents the controller part of this model. Test cases designed in the
ManeuversGUI Signal Builder block drive the closed-loop simulation.

Record Coverage Data for the Model

To simulate the model, recording condition, decision, and MCDC coverage for the
ShiftLogic controller:

1 Open the example model:

sldvdemo_autotrans

2 In the Simulink Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane in the Configuration Parameters dialog box. set the following

options:

• Select Enable coverage analysis.
• Select Subsystem and click Select Subsystem.
• In the Subsystem Selection dialog box, select ShiftLogic and click OK.

4 Under Coverage metrics, select Modified Condition Decision (MCDC).
5 Clear the Other metrics if they are selected.
6 In the Coverage > Results pane of the Configuration Parameters dialog box, set the

following options:

9-12



 Achieve Missing Coverage in Closed-Loop Simulation Model

• In the cvdata object name field, enter covdata_original_controller to
specify a unique name for the coverage data workspace variable.

• Select Generate report automatically after analysis.
7 Click OK.
8 Start the simulation of the sldvdemo_autotrans model to record the coverage

data.

After the simulation, the coverage report opens. The report indicates that the
following coverage is achieved for the ShiftLogic Stateflow chart:

• Decision: 87% (27/31)
• Condition: 67% (8/12)
• MCDC: 33% (2/6) conditions reversed the outcome

The simulation saves the coverage data in the MATLAB workspace variable
covdata_original_controller, a cvtest object that contains the coverage data.

9 Save the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata_original_controller);

Find Test Cases for Missing Coverage

To find the missing coverage for the ShiftLogic chart, run a subsystem analysis on that
block. Use this technique to focus your analysis on an individual part of the model.

To achieve 100% coverage for the ShiftLogic controller, run a test-generation analysis
that uses the existing coverage data.

1 Right-click the ShiftLogic block and select Design Verifier > Options.
2 In the Configuration Parameters dialog box, under the Select tree, choose the

Design Verifier node. Under Analysis options in the Mode field, select Test
generation.

3 Under the Design Verifier node, select Test Generation. Under Existing
coverage data, select Ignore objectives satisfied in existing coverage data.

4 In the Coverage data file field, enter the name of the file containing the coverage
data that you recorded during simulation:

9-13



9 Achieving Test Cases for Missing Model Coverage

existingcov.cvt

5 Click Apply to save these settings.
6 Under the Select tree, click Design Verifier.

7 On the main Design Verifier pane, click Generate Tests.

The analysis extracts the Stateflow chart into a new model named ShiftLogic0.
The analysis analyzes the new model, ignoring the coverage objectives previously
satisfied and recorded in the existingcov.cvt file.

8 When the test-generation analysis is complete, in the Simulink Design Verifier log
window, select Simulate tests and produce a model coverage report.

The report indicates that the following coverage is achieved for the ShiftLogic chart
in simulation with the test cases generated by Simulink Design Verifier:

• Decision: 84% (26/31)
• Condition: 83% (10/12)
• MCDC: 67% (4/6) conditions reversed the outcome

The Simulink Design Verifier report lists six test cases for the extracted model that
satisfy the objectives not covered in the existingcov.cvt file.

The Simulink Design Verifier report indicates that two coverage objectives in the
Stateflow chart ShiftLogic are proven unsatisfiable. The implicit event tick is never
false because the ShiftLogic chart is updated at every time step. The analysis
cannot satisfy condition or MCDC coverage for either instance of the temporal event
after(TWAIT, tick).

after(TWAIT, tick) is semantically equivalent to

Event == tick && temporalCount(tick) >= TWAIT

If you move after(TWAIT, tick) into the condition, as in

[after(TWAIT, tick) && speed < down_th]

Simulink Design Verifier determines that tick is always true, so it only tests
the temporalCount(tick) >= TWAIT part of after(TWAIT, tick). The
analysis is able to find test objectives that satisfy condition and MCDC coverage for
after(TWAIT, tick).

9-14



 Modified Condition and Decision Coverage in Simulink Design Verifier

Modified Condition and Decision Coverage in Simulink Design
Verifier

Depending on the settings you apply for Simulink Verification and Validation coverage
recording, there can be a difference between the definition of modified condition and
decision (MCDC) coverage used for model coverage analysis in Simulink Verification and
Validation and that used for test case generation analysis in Simulink Design Verifier.

MCDC Definitions for Simulink Verification and Validation and Simulink
Design Verifier

Simulink Design Verifier always uses the masking MCDC definition for test case
generation. By default, Simulink Verification and Validation also uses the masking
MCDC definition when recording coverage. However, if you set the CovMcdcMode
model configuration parameter to 'UniqueCause', Simulink Verification and
Validation instead uses the unique-cause MCDC definition when recording coverage.
For information on the differences between the masking MCDC definition and the
unique-cause MCDC definition, see “Modified Condition and Decision Coverage (MCDC)
Definitions in Simulink Verification and Validation” (Simulink Verification and
Validation).

Setting the CovMcdcMode model configuration parameter to 'UniqueCause' can result
in differences between MCDC reporting in Simulink Verification and Validation and
test generation in Simulink Design Verifier. An example of this difference can be seen in
analysis results for logical expressions containing a mixture of AND and OR operators, as
in this Stateflow transition.

9-15



9 Achieving Test Cases for Missing Model Coverage

Given that A, B, and C are each separate inputs, there are five possible ways to evaluate
the condition on the Stateflow transition, shown in the following table.

 A B C (A && B) || C

1 F x F F
2 F x T T
3 T F F F
4 T F T T
5 T T x T

Satisfying MCDC for a Boolean variable requires a pair of condition evaluations, showing
that a change in that variable alone changes the evaluation of the entire expression. In
this example, MCDC can be satisfied for C with either the pair 1, 2 or the pair 3, 4. In
both of those cases, the value of the expression changed because the value of C changed,
while all other variable values stayed the same.

Each pair has a different set of values for A and B which are held constant, but each
pair contains one evaluation where C and out are true and one evaluation where C
and out are false. To satisfy MCDC for C, Simulink Design Verifier test generation
analysis accepts any pair containing one evaluation of true values and one evaluation
of false values for C and out. In this example, Simulink Design Verifier test generation
analysis accepts not only pair 1, 2 and pair 3, 4 but also pair 1, 4 and pair 2, 3. Simulink
Verification and Validation model coverage analysis using the unique-cause MCDC
definition is satisfied only by pair 1, 2 or by pair 3, 4.

The preceding example assumes that A, B, and C are all separate inputs. When input
A is constrained to be the same value as C, as in this model, only a subset of condition
evaluations are possible.

9-16



 Modified Condition and Decision Coverage in Simulink Design Verifier

This subset of condition evaluations for the Stateflow transition is shown in the following
table.

 A B C (A && B) || C

1 F x F F
4 T F T T
5 T T x T

Evaluations 2 and 3 are no longer possible, so neither pair 1, 2 nor pair 3, 4 is possible.
As a result, unique-cause MCDC for C can no longer be satisfied in Simulink Verification
and Validation model coverage analysis. Since pair 1, 4 is still possible, however,
Simulink Design Verifier test generation analysis reports that MCDC for C is satisfiable.

The complexity of MCDC analysis for logical expressions with a mixture of AND and
OR operators causes this difference between results from Simulink Verification and
Validation set to unique-cause MCDC analysis and Simulink Design Verifier. The
defaultCovMcdcMode model configuration parameter value of 'Masking' does not
cause this discrepancy. However, if you require the use of unique-cause MCDC analysis
in Simulink Verification and Validation, you can minimize this effect by using the
IndividualObjectives test suite optimization for test generation analysis in Simulink
Design Verifier For more information, see the Tip section of “Test suite optimization” on
page 15-47.

More About
• “MCDC” on page 7-28

9-17





10

Verifying Model Components

• “What Is Component Verification?” on page 10-2
• “Functions for Component Verification” on page 10-4
• “Verify a Component for Code Generation” on page 10-6



10 Verifying Model Components

What Is Component Verification?

In this section...

“Component Verification Approaches” on page 10-2
“Simulink Design Verifier Tools for Component Verification” on page 10-2

Component Verification Approaches

Component verification lets you test a design component in your model using either of
the following approaches:

• Within the context of the model that contains the component — Using
systematic simulation of closed-loop controllers requires that you verify components
within a control system model. Doing so lets you test the control algorithms with your
model. This approach is called system analysis.

• As standalone components — For a high level of confidence in the component
algorithm, verify the component in isolation from the rest of the system. This
approach is called component analysis.

Verifying standalone components provides three advantages:

• You can use analysis to focus on portions of the design that you cannot test
because of the physical limitations of the system being controlled.

• You can use this approach for open-loop simulations to test the plant model
without feedback control.

• You can use this approach when the model is unavailable or when you need to
simulate a control system model in accelerated mode for performance reasons.

Simulink Design Verifier Tools for Component Verification

By isolating the component to verify, and using tools that Simulink Design Verifier
provides, you create test cases that let you expand the scope of the testing for large
models. This expanded testing helps you accomplish the following:

• Achieve 100% model coverage — If certain model components do not record 100%
coverage, the top-level model cannot achieve 100% coverage. By verifying these
components individually, you can create test cases that fully specify the component
interface, allowing the component to record 100% coverage.

10-2



 What Is Component Verification?

• Debug the component — To verify that each model component satisfies the specified
design requirements, you can create test cases that verify that specific components
perform as designed.

• Test the robustness of the component — To verify that a component handles
unexpected inputs and calculations properly, you can create test cases that generate
data. Then, test the error-handling capabilities in the component.

10-3



10 Verifying Model Components

Functions for Component Verification

The Simulink Design Verifier software provides several functions that facilitate the tasks
associated with component verification.

Function Task

sldvlogsignals Simulate a Simulink model and log input signals to a Model
block in the model. If you modify the test cases in the Signal
Builder harness model, use this approach for logging input
signals to the harness model itself.

sldvmakeharness Create a harness model for a component, using logged input
signals if specified, or using the default signals.

For more information about harness models, see “Simulink
Design Verifier Harness Models” on page 13-16.

sldvmergeharness Merge test cases from several harness models into a single
harness model.

sldvextract Extract an atomic subsystem or atomic subchart into a new
model.

sldvruntest Simulate a model, executing the specified test cases to
record model coverage and outport values.

sldvruncgvtest Invoke the Code Generation Verification (CGV) API, and
execute the specified test cases on the generated code for the
model.

Note: To execute a model in different modes of execution,
use the CGV API to verify the numerical equivalence of
results. For more information about the CGV API, see
“Programmatic Code Generation Verification” (Embedded
Coder).

Component verification functions do not support the following Simulink features:

• Variable-step solvers for sldvruntest
• Component interfaces that contain:

• Complex signals

10-4



 Functions for Component Verification

• Variable-size signals
• Array of buses
• Multiword fixed-point data types

10-5



10 Verifying Model Components

Verify a Component for Code Generation

In this section...

“About the Example Model” on page 10-6
“Prepare the Component for Verification” on page 10-8
“Record Coverage for the Component” on page 10-9
“Use Simulink Design Verifier Software to Record Additional Coverage” on page
10-10
“Combine the Harness Models” on page 10-12
“Execute the Component in Simulation Mode” on page 10-13
“Execute the Component in Software-in-the-Loop (SIL) Mode” on page 10-13

About the Example Model

This example uses the slvnvdemo_powerwindow model to show how to verify a
component in the context of the model that contains that component. As you work
through this example, you use the Simulink Design Verifier component verification
functions to create test cases and measure coverage for a referenced model. In addition,
you can execute the referenced model in both simulation mode and Software-in-the-Loop
(SIL) mode using the Code Generation Verification (CGV) API.

Note: You must have the following product licenses to run this example:

• Stateflow
• Embedded Coder®

• Simulink Coder™

The component that you verify is a Model block named control. This component
resides inside the power_window_control_system subsystem in the top level of the
slvnvdemo_powerwindow model. The power_window_control_system subsystem is
shown below.

10-6



 Verify a Component for Code Generation

The control Model block references the slvnvdemo_powerwindow_controller
model.

The referenced model contains a Stateflow chart control, which implements the logic
for the power window controller.

10-7



10 Verifying Model Components

Prepare the Component for Verification

To verify the referenced model slvnvdemo_powerwindow_controller, create a
harness model that contains the input signals that simulate the controller in the plant
model:

1 Open the slvnvdemo_powerwindow example model and the referenced model:

open_system('slvnvdemo_powerwindow');

open_system('slvnvdemo_powerwindow_controller');

2 Open the power_window_control_system subsystem in the example model.

The Model block named control in the power_window_control_system
subsystem references the component that you verify during this example,
slvnvdemo_powerwindow_controller.

3 Simulate the Model block that references the
slvnvdemo_powerwindow_controller model and log the input signals to the
Model block:

loggedSignalsPlant = sldvlogsignals( ...

10-8



 Verify a Component for Code Generation

 'slvnvdemo_powerwindow/power_window_control_system/control');

sldvlogsignals stores the logged signals in loggedSignalsPlant.
4 Generate a harness model with the logged signals:

harnessModelFilePath = sldvmakeharness( ...

 'slvnvdemo_powerwindow_controller', loggedSignalsPlant);

sldvmakeharness creates and opens a harness model named
slvnvdemo_powerwindow_controller_harness. The Signal Builder block
contains one test case containing the logged signals.

For more information about harness models, see “Simulink Design Verifier Harness
Models” on page 13-16.

5 For use later in this example, save the name of the harness model:

[~, harnessModel] = fileparts(harnessModelFilePath);

6 Leave all windows open for the next part of this example.

Next, you will record coverage for the slvnvdemo_powerwindow_controller model.

Record Coverage for the Component

Model coverage is a measure of how thoroughly a test case tests a model, and
the percentage of pathways that a test case exercises. To record coverage for the
slvnvdemo_powerwindow_controller model:

1 Create a default options object, required by the sldvruntest function:

runOpts = sldvruntestopts;

2 Specify to simulate the model, and record coverage:

runOpts.coverageEnabled = true;

3 Simulate the referenced model and record coverage:

[~, covDataFromLoggedSignals] = sldvruntest( ...

 'slvnvdemo_powerwindow_controller', loggedSignalsPlant, runOpts);

4 Display the HTML coverage report:

cvhtml('Coverage with Test Cases', covDataFromLoggedSignals);

10-9



10 Verifying Model Components

The slvnvdemo_powerwindow_controller model achieved:

• Decision coverage: 40%
• Condition coverage: 35%
• MCDC coverage: 10%

For more information about decision coverage, condition coverage, and MCDC
coverage, see “Types of Model Coverage” (Simulink Verification and Validation).

Because you did not achieve 100% coverage for the
slvnvdemo_powerwindow_controller model, next, you will analyze the model to
record additional coverage and create additional test cases.

Use Simulink Design Verifier Software to Record Additional Coverage

You can use Simulink Design Verifier to analyze the
slvnvdemo_powerwindow_controller model and collect coverage. You can specify
that the analysis ignore any previously satisfied objectives and record additional
coverage.

To record additional coverage for the model:

1 Save the coverage data that you recorded for the logged signals in a file:

cvsave('existingCovFromLoggedSignal', covDataFromLoggedSignals);

2 Create a default options object for the analysis:

opts = sldvoptions;

3 Specify that the analysis generate test cases to record decision, condition, and
modified condition/decision coverage:

opts.ModelCoverageObjectives = 'MCDC';

4 Specify that the analysis ignore objectives that you satisfied when you logged the
signals to the Model block:

opts.IgnoreCovSatisfied = 'on';

5 Specify the name of the file that contains the satisfied objectives data:

opts.CoverageDataFile = 'existingCovFromLoggedSignal.cvt';

10-10



 Verify a Component for Code Generation

6 Specify that the analysis not display unsatisfiable objectives in the Diagnostic
Viewer:

opts.DisplayUnsatisfiableObjectives = 'off';

For this example, the focus is on satisfying as many objectives as possible.
7 Specify that the analysis create long test cases that satisfy several objectives:

opts.TestSuiteOptimization = 'LongTestcases';

Creating a smaller number of test cases each of which satisfies multiple test
objectives saves time when you execute the generated code in the next section.

8 Specify to create a harness model that references the component using a Model
block:

opts.saveHarnessModel = 'on';

opts.ModelReferenceHarness = 'on';

The harness model that you created from the logged signals in “Prepare
the Component for Verification” on page 10-8 uses a Model block that
references the slvnvdemo_powerwindow_controller model. The harness
model that the analysis creates must also use a Model block that references
slvnvdemo_powerwindow_controller. You can append the test case data to the
first harness model, creating a single test suite.

9 Analyze the model using Simulink Design Verifier:

[status, fileNames] = sldvrun('slvnvdemo_powerwindow_controller', ...

 opts, true);

The analysis creates and opens a harness model
slvnvdemo_powerwindow_controller_harness. The Signal Builder block
contains one long test case that satisfies 74 test objectives.

You can combine this test case with the test case that you created in “Prepare the
Component for Verification” on page 10-8, to record additional coverage for the
slvnvdemo_powerwindow_controller model.

10 Save the name of the new harness model and open it:

[~, newHarnessModel] = fileparts(fileNames.HarnessModel);

open_system(newHarnessModel); 

Next, you will combine the two harness models to create a single test suite.

10-11



10 Verifying Model Components

Combine the Harness Models

You created two harness models when you:

• Logged the signals to the control Model block that references the
slvnvdemo_powerwindow_controller model.

• Analyzed the slvnvdemo_powerwindow_controller model.

If you combine the test cases in both harness models, you can record coverage that gets
you closer to achieving 100% coverage:

1 Combine the harness models by appending the most recent test cases to the test
cases for the logged signals:

sldvmergeharness(harnessModel, newHarnessModel);

The Signal Builder block in the slvnvdemo_powerwindow_controller_harness
model now contains both test cases.

2 Log the signals to the harness model:

loggedSignalsMergedHarness = sldvlogsignals(harnessModel);

3 Use the combined test cases to record coverage for the
slvnvdemo_powerwindow_controller_harness model. First, configure the
options object for sldvruntest:

runOpts = sldvruntestopts;

runOpts.coverageEnabled = true;

4 Simulate the model and record and display the coverage data:

[~, covDataFromMergedSignals] = sldvruntest( ...

 'slvnvdemo_powerwindow_controller', loggedSignalsMergedHarness, ...

 runOpts);

cvhtml('Coverage with Merged Test Cases', covDataFromMergedSignals);

The slvnvdemo_powerwindow_controller model now achieves:

• Decision coverage: 100%
• Condition coverage: 80%
• MCDC coverage: 60%

10-12



 Verify a Component for Code Generation

Execute the Component in Simulation Mode

To verify that the generated code for the model produces the same results as simulating
the model, use the Code Generation Verification (CGV) API methods.

Note: To execute a model in different modes of execution, use the CGV API to verify
the numerical equivalence of results. For more information about the CGV API, see
“Programmatic Code Generation Verification” (Embedded Coder).

When you perform this procedure, the simulation compiles and executes the model code
using both test cases.

1 Create a default options object for sldvruncgvtest:

runcgvopts = sldvruntestopts('cgv');

2 Specify to execute the model in simulation mode:

runcgvopts.cgvConn = 'sim';

3 Execute the slvnv_powerwindow_controller model using the two test cases and
the runcgvopts object:

cgvSim = sldvruncgvtest('slvnvdemo_powerwindow_controller', ...

 loggedSignalsMergedHarness, runcgvopts);

These steps save the results in the workspace variable cgvSim.

Next, you will execute the same model with the same test cases in Software-in-the-Loop
(SIL) mode and compare the results from both simulations.

For more information about Normal simulation mode, see “Execute the Model”
(Embedded Coder).

Execute the Component in Software-in-the-Loop (SIL) Mode

When you execute a model in Software-in-the-Loop (SIL) mode, the simulation compiles
and executes the generated code on your host computer.

In this section, you execute the slvnvdemo_powerwindow_controller model in SIL
mode and compare the results to the previous section, when you executed the model in
simulation mode.

10-13



10 Verifying Model Components

1 Specify to execute the model in SIL mode:

runcgvopts.cgvConn = 'sil';

2 Execute the slvnv_powerwindow_controller model using the two test cases and
the runcgvopts object:

cgvSil = sldvruncgvtest('slvnvdemo_powerwindow_controller', ...

 loggedSignalsMergedHarness, runcgvopts);

The workspace variable cgvSil contains the results of the SIL mode execution.
3 Compare the results in cgvSil to the results in cgvSim, created from the

simulation mode execution. Use the compare (cgv.CGV) (Embedded Coder)
method to compare the results from the two simulations:

for i=1:length(loggedSignalsMergedHarness.TestCases)

    simout = cgvSim.getOutputData(i);

    silout = cgvSil.getOutputData(i);

    [matchNames, ~, mismatchNames, ~ ] = ...

   cgv.CGV.compare(simout, silout);

end

4 Display the results of the comparison in the MATLAB Command Window:

fprintf(['\nTest Case(%d):%d Signals match, %d Signals mismatch\r'],...

 i, length(matchNames), length(mismatchNames));

As expected, the results of the two simulations match.

For more information about Software-in-the-Loop (SIL) simulations, see “What Are SIL
and PIL Simulations?” (Embedded Coder).

10-14



11

Considering Specified Minimum and
Maximum Values for Inputs During
Analysis

• “Minimum and Maximum Input Constraints” on page 11-2
• “Specify Input Ranges on Simulink and Stateflow Elements” on page 11-4
• “Specify Input Ranges in sldvData Fields” on page 11-11



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Minimum and Maximum Input Constraints

In this section...

“Simulink Design Verifier Support for Specified Input Minimum and Maximum Values”
on page 11-2
“Limitations of Simulink Design Verifier Support for Specified Minimum and Maximum
Values” on page 11-3

When creating a model, you can specify minimum and maximum values on input ports
to mimic environmental constraints as part of your design. The Simulink Design Verifier
analysis can automatically consider these values as constraints for:

• Design error detection
• Test case generation
• Property proving

Specifying minimum and maximum input values is similar to using the Test Condition
block to constrain signals for test case generation or the Proof Assumption block to
constrain signals for property proving. The Test Condition and Proof Assumption blocks
capture the analysis constraints. The Simulink Design Verifier software can also consider
the design constraints captured in the Inport block minimum and maximum parameters
as constraints for analysis.

Note: For more information about signal values, see “Signal Values” (Simulink).

Simulink Design Verifier Support for Specified Input Minimum and
Maximum Values

By default, Simulink Design Verifier considers any minimum and maximum input values
specified for Inport blocks in your model. To enable this capability:

1 In the model window, select Analysis > Design Verifier > Options.
2 On the Design Verifier pane, select the Use specified input minimum and

maximum values parameter.
3 After the analysis completes, to view the design minimum and maximum constraints

for your model, click Generate detailed analysis reports.

11-2



 Minimum and Maximum Input Constraints

The constraints are listed in the Analysis Information chapter of the Simulink
Design Verifier report.

Limitations of Simulink Design Verifier Support for Specified Minimum
and Maximum Values

Simulink Design Verifier support for specified minimum and maximum values has the
following limitations:

• The analysis considers specified minimum and maximum values on root-level Inport
blocks only. The analysis ignores minimum and maximum values specified on other
Simulink blocks.

More About
• “Signal Ranges” (Simulink)

11-3



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Specify Input Ranges on Simulink and Stateflow Elements

When you specify input range constraints on Simulink and Stateflow elements, Simulink
Design Verifier considers these constraints during analysis.

In this section...

“Specify Input Ranges for Inport Blocks” on page 11-4
“Specify Input Ranges for Simulink.Signal Objects” on page 11-5
“Specify Input Ranges for Stateflow Data Objects” on page 11-6
“Specify Input Ranges for Subsystems” on page 11-7
“Specify Input Ranges for Global Data Stores” on page 11-8
“Specify Input Ranges for Bus Elements” on page 11-9

Specify Input Ranges for Inport Blocks

After you specify the output minimum and maximum values on Inport blocks (Simulink),
Simulink Design Verifier analysis uses the minimum and maximum values as
constraints.

The following example model restricts the signals from two Inport blocks:

• Input1 block: Minimum: 1, Maximum: 5
• Input2 block: Minimum: -1, Maximum: 1

When you use Simulink Design Verifier, to analyze this model, the analysis produces
these results:

11-4



 Specify Input Ranges on Simulink and Stateflow Elements

• The output from Input1 is never less than 0, therefore the first input to the Logical
Operator block is never false. The objective that the first input to the Logical
Operator equals false is unsatisfiable.

• The Logical Operator block cannot achieve 100% modified condition/decision coverage
(MCDC) coverage because the condition where the first input is false never occurs.

The detailed analysis report shows the values you use as constraints for Input1 and
Input2.

Specify Input Ranges for Simulink.Signal Objects

Using the Model Explorer, in the model workspace, you can specify minimum and
maximum values (Simulink) on Simulink.Signal objects associated with input signals.

The following example model uses the Simulink.Signal objects associated with the
input signals a and b to restrict the signal values:

• Signal a: Minimum: 1, Maximum: 5
• Signal b: Minimum: -1, Maximum: 1

When you analyze this model, the results are the same as if you specified the minimum
and maximum values on the input ports.

Specifying Signal Ranges on Inport Blocks and Signals

If you specify ranges on the Inport blocks and on the signals, the analysis considers the
smallest range for the values. For example, if you specify a range of 4..12 on an input
port and a range of 1..8 on the signal from the input port, the analysis considers the
range 4..8.

11-5



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Specify Input Ranges for Stateflow Data Objects

Using the Model Explorer, you can specify ranges on data objects that are directly
connected to the root-level input ports (Simulink) for a Stateflow chart.

In the following example model, the Stateflow chart named Chart has a data object,
x, whose range you specified as 0 < x < 10. In this chart, x must be greater than 15 to
trigger the transition from low to high.

The value of x ranges from 0 through 10, therefore the transition condition [x > 15]
is never true. The transition from low to high never occurs. Because the high state is
never entered, the transition condition [x < 15] is never tested, and the transition from
high to low never occurs. The chart is always in the low state.

When you analyze this model, these objectives are proven unsatisfiable:

• The high state is never entered.
• The transition condition [x > 15] is always false, never true.
• The condition [x < 15] is never tested, so it is never true or false.

The analysis report indicates the values that you use as constraints for x: [0, 10].

11-6



 Specify Input Ranges on Simulink and Stateflow Elements

Specify Input Ranges for Subsystems

The Simulink Design Verifier software considers specified input minimum and maximum
values as constraints only at the top level of a model. You can specify minimum and
maximum values on Input ports (Simulink) on subsystems, but when you analyze the
top-level model, the software ignores those values.

When you perform the subsystem analysis, the software considers specified minimum
and maximum values on the input ports of the subsystem.

For example, consider the following model and its subsystem.

In Subsystem, the specified minimum and maximum values for input port SSIn are -10
and 10, respectively. The lower and upper limits for the Saturation block are -15 and 15,
respectively.

If you right-click Subsystem in the top-level model and select Design Verifier >
Generate Tests for Subsystem, the analysis considers the specified minimum and
maximum values as constraints on the SSIn port.

11-7



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

The analysis identifies two unsatisfiable objectives:

• input > lower limit F: The input is always greater than the lower limit on the
Saturation block (-15).

• input >= upper limit T: The input is never greater than or equal to the upper limit on
the Saturation block (15).

If you analyze the model that contains Subsystem, the analysis does not consider the
values specified on the input port SSIn in the subsystem. The analysis considers only the
root-level input ports at the respective level of the hierarchy for analysis.

Specify Input Ranges for Global Data Stores

A data store is a repository to which you can write data and from which you can read
data, without having to connect an input or output signal directly to the data store. You
create a data store by using a Data Store Memory block or a Simulink.Signal object.
You can specify minimum and maximum values (Simulink) for any data store.

During subsystem analysis, Simulink Design Verifier creates an input port to mimic the
execution context for a global data store. For more information, see “Extract Subsystems
for Analysis” on page 14-16. If the data store has specified minimum and maximum
values, those values are assigned as minimum and maximum values on the new input
port. Simulink Design Verifier analysis considers the input minimum and maximum
values as subsystem-level analysis constraints.

In the following example model, data store A has a minimum value of 0 and a maximum
value of 10.

The atomic subsystem reads values from the data store and checks to see if the input is
less than 0. The Compare To Zero block outputs 1 if the input is less than 0, and outputs
0 if the input is greater than or equal to 0. The Test Objective block checks to see if the
output is ever 1.

11-8



 Specify Input Ranges on Simulink and Stateflow Elements

In the top-level model, if you right-click Subsystem and select Design Verifier >
Generate Tests for Subsystem, the analysis considers the constraints for data store A
to be [0, 10].

The analysis does not satisfy the objective specified in the Test Objective block. The input
is always greater than or equal to 0, therefore the output from the Compare To Zero
block is always 0.

Specify Input Ranges for Bus Elements

When you define a bus, you can specify minimum and maximum values for the elements
in the bus (Simulink). Simulink Design Verifier considers these minimum and maximum
values when analyzing subsystems and models that use the bus as an input signal.

Consider a subsystem that inputs a bus of three fields, each with a defined minimum and
maximum. To view this subsystem, at the command line, enter:

open_system(fullfile(docroot,'toolbox','sldv','examples',

'sldvBusMinMaxExample'))

11-9



11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Bus Element Bus Element Minimum Bus Element Maximum

vehicleSpeed 0 125
throttle 0 100
engineSpeed 0 7600

The subsystem has test objectives that confirm that each element does not exceed a
constant. The vehicleSpeed signal is limited to a maximum value lower than the test
objective.

Set the current folder to a writable folder. In the top-level mode, right-click Subsystem
and select Design Verifier > Generate Tests for Subsystem. The Condition Objective
for testing vehicleSpeed > 135 is not satisfiable due to the maximum specification on
the vehicleSpeed element.

11-10



 Specify Input Ranges in sldvData Fields

Specify Input Ranges in sldvData Fields

When you analyze a model, Simulink Design Verifier generates a data file when it
completes its analysis. The data file is a MAT-file that contains an sldvData structure.
The sldvData structure stores all the data that the software gathers and produces
during the analysis. You can use the data file to customize your own analysis or to
generate a custom report.

If your model contains specified minimum and maximum values on the input ports,
the sldvData structure contains information about those values. For example, after
analyzing the ex_minmax_on_inports model in “Specify Input Ranges for Inport
Blocks” on page 11-4, the data file contains the following values:

• For the Input1 block:

sldvData.Constraints.DesignMinMax(1).value{1}.low

ans =

     1

sldvData.Constraints.DesignMinMax(1).value{1}.high

ans =

     5

• For the Input2 block:

sldvData.Constraints.DesignMinMax(2).value{1}.low

ans =

    -1

sldvData.Constraints.DesignMinMax(2).value{1}.high

ans =

     1

11-11





12

Proving Properties of a Model

• “What Is Property Proving?” on page 12-2
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5
• “Prove System-Level Properties Using Verification Model” on page 12-25
• “Prove Properties in a Subsystem” on page 12-29
• “Model Requirements” on page 12-30



12 Proving Properties of a Model

What Is Property Proving?

A property is a requirement that you model in Simulink or Stateflow, or using MATLAB
Function blocks. A property can be a simple requirement, such as a signal in your model
that must attain a particular value or range of values during simulation.

A property can also be a requirement on the model that involves a number of input and
output signals modeled as a logical expression that needs to be proved.

The Simulink Design Verifier software performs a formal analysis of your model to prove
or disprove the specified properties. After completing the analysis, the software offers
several ways for you to review the results:

• Highlighted on the model
• A harness model with test cases
• A detailed HTML report

Proof Blocks

The Simulink Design Verifier software provides two blocks so you can specify property
proofs in your Simulink models:

• Proof Objective — Define the values of a signal to prove
• Proof Assumption — Constrain the values of a signal during a proof

Note: Blocks from the Model Verification library in the Simulink software behave like
Proof Objective blocks during Simulink Design Verifier proofs. You can use Assertion
blocks and other Model Verification blocks to specify properties of your model. For more
information about these blocks, see “Model Verification” (Simulink).

Proof Functions

The Simulink Design Verifier software provides two Stateflow and MATLAB for code
generation functions to specify property proving for a Simulink model or Stateflow chart:

• sldv.prove — Specifies a proof objective
• sldv.assume — Specifies a proof assumption

12-2



 What Is Property Proving?

These functions:

• Identify mathematical relationships for proving properties in a form that can be more
natural than using block parameters

• Support specifying multiple objectives, assumptions, or conditions without
complicating the model.

• Provide access to the power of MATLAB.
• Support separation of verification and model design.

For an example of how to use these proof functions, see the sldv.prove reference page.

Note: Simulink Design Verifier blocks and functions are saved with a model. If you open
the model on a MATLAB installation that does not have a Simulink Design Verifier
license, you can see the blocks and functions, but they do not produce results.

12-3



12 Proving Properties of a Model

Workflow for Proving Model Properties

To prove properties of your design model, use the following workflow:

1 Determine the verification objectives for your design model, e.g., based on your
requirements specifications.

2 Instrument your design model to specify proof objectives and proof assumptions.

• For simple properties, instrument your model with blocks or MATLAB functions
that specify the proof objectives.

• For system-level properties, construct a verification model that contains a Model
block that references the design model and define the properties on the design
model interface using the same inputs and outputs.

3 Define analysis constraints using the Proof Assumption block or sldv.assume.
These constraints apply to all enabled proof objectives.

Note: The proof assumptions are applied to all enabled proof objectives. Make sure
that you do not specify any contradictory assumptions because that might invalidate
the entire analysis.

4 Specify options that control how Simulink Design Verifier proves the properties of
your model.

5 Execute the Simulink Design Verifier analysis and review the results.

For an exercise that demonstrates this workflow, see “Prove Properties in a Model” on
page 12-5.

12-4



 Prove Properties in a Model

Prove Properties in a Model

In this section...

“About This Example” on page 12-5
“Construct Example Model” on page 12-6
“Check Compatibility of Example Model” on page 12-7
“Instrument Example Model” on page 12-8
“Configure Property-Proving Options” on page 12-9
“Analyze Example Model” on page 12-10
“Review Analysis Results” on page 12-10
“Customize Example Proof” on page 12-19
“Reanalyze Example Model” on page 12-20
“Review Results of Second Analysis” on page 12-20
“Analyze Contradictory Models” on page 12-23
“Prove Properties in a Large Model” on page 12-24

About This Example

The following sections describe a Simulink model, for which you prove a property that
you specify using a Proof Objective block. This example demonstrates the property-
proving capabilities of Simulink Design Verifier.

In this example, you perform the following tasks.

Task Description See...

1 Construct the example model. “Construct Example Model” on page
12-6

2 Verify that your model is
compatible with Simulink Design
Verifier.

“Check Compatibility of Example Model” on
page 12-7

3 Add a Proof Objective block to
your model to prepare for its
proof.

“Instrument Example Model” on page
12-8

12-5



12 Proving Properties of a Model

Task Description See...

4 Configure Simulink Design
Verifier to prove properties.

“Configure Property-Proving Options” on
page 12-9

5 Prove a property of your model. “Analyze Example Model” on page 12-10
6 Review the analysis results. “Review Analysis Results” on page 12-10
7 Add proof assumptions to specify

analysis constraints.
“Customize Example Proof” on page
12-19

8 Prove a property of the
customized model and interpret
the results.

“Reanalyze Example Model” on page
12-20

Construct Example Model

Construct a Simulink model to use in this example:

1 Create an empty Simulink model.
2 Copy the following blocks into your empty model window:

• From the Sources library, an Inport block to initiate the input signal whose value
Simulink Design Verifier controls

• From the Logic and Bit Operations library, a Compare To Zero block to provide
simple logic

• From the Sinks library, an Outport block to receive the output signal
3 Connect these blocks such so your model appears similar to the following model:

4 In the model window, select Simulation > Model Configuration Parameters.
5 On the left side of the Configuration Parameters dialog box, in the Select tree, click

the Solver category. On the right side, under Solver options:

• Set the Type option to Fixed-step.
• Set the Solver option to Discrete (no continuous states).

12-6



 Prove Properties in a Model

The Simulink Design Verifier can analyze only models that use a fixed-step solver.
6 Click OK to save your changes and close the Configuration Parameters dialog box.
7 Save your model with the name ex_property_proving_example_basic.

Check Compatibility of Example Model

Every time Simulink Design Verifier software analyzes a model, before the analysis
begins, the software performs a compatibility check. If your model is not compatible, the
software cannot analyze it.

You can also make sure you model is compatible with Simulink Design Verifier before
you start the analysis:

1 Open the ex_property_proving_example_basic model.
2 In the model window, select Analysis > Design Verifier > Check Compatibility >

Model.

The Simulink Design Verifier software displays the log window, which states
whether or not your model is compatible.

The model you just created is compatible.

12-7



12 Proving Properties of a Model

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model
contains at least one object that Simulink Design Verifier does not support. You can
analyze a partially compatible model, but, by default, unsupported objects are stubbed
out. The results of the analysis may be incomplete. For detailed information about
automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing” on page 2-8.

Instrument Example Model

Prepare your example model so that you can prove its properties with Simulink Design
Verifier. Specifically, instrument the model by adding and configuring a Proof Objective
block:

1 In the MATLAB Command Window, enter sldvlib.

12-8



 Prove Properties in a Model

The Simulink Design Verifier library appears.
2 Open the Objectives and Constraints sublibrary.
3 Copy the Proof Objective block to your model and insert it between the Compare To

Zero and Outport blocks.
4 In your model, double-click the Proof Objective block.

The Proof Objective block parameters dialog box opens.
5 In the Values box, enter 1.

The Simulink Design Verifier software will attempt to prove that the signal output
by the Compare To Zero block always attains this value for any signals that it
receives.

6 Click OK to apply your changes and close the Proof Objective block parameters
dialog box.

7 Save your model and keep it open.

Configure Property-Proving Options

Configure Simulink Design Verifier to prove properties of the
ex_property_proving_example_basic model that you instrumented:

1 Open the ex_property_proving_example_basic model.
2 In your Simulink model window, select Analysis > Design Verifier > Options.
3 On the left side of the Configuration Parameters dialog box, in the Select tree, select

the Design Verifier category. Under Analysis options on the right side, set the
Mode parameter to Property proving.

4 Click OK to apply your changes and close the Configuration Parameters dialog box.

12-9



12 Proving Properties of a Model

Note: On the Property Proving pane, you can optionally specify values for other
parameters that control how Simulink Design Verifier proves properties of your
model. For more information, see “Design Verifier Pane: Property Proving” on page
15-64.

5 Save the ex_property_proving_example_basic model.

Analyze Example Model

To analyze the ex_property_proving_example_basic model, in the model window,
select Analysis > Design Verifier > Prove Properties > Model. The Simulink Design
Verifier software begins a property-proving analysis.

During the analysis, the log window shows the progress of the analysis. It displays
information such as the number of objectives processed and which objectives were
satisfied or falsified.

To terminate the analysis at any time, in the log window, click Stop.

Review Analysis Results

When the analysis is complete, the log window displays the following options for
reviewing the results:

• Highlight the analysis results on the model
• Generate a detailed HTML analysis report
• Create a harness model with test cases
• Simulate the test cases created by the model and produce a model coverage report

You can also view the Simulink Design Verifier data file. For detailed information about
the data file, see “Simulink Design Verifier Data Files” on page 13-9.

The following sections describe how you can review the analysis results:

• “Review Results on Model” on page 12-11
• “Review Detailed Analysis Report” on page 12-13
• “Review Harness Model” on page 12-15
• “Simulate Model with Counterexample” on page 12-16
• “Review Analysis Results in the Model Explorer” on page 12-18

12-10



 Prove Properties in a Model

Review Results on Model

You can review the analysis results at a glance by viewing the blocks that are highlighted
in the model window. The highlighting can have four colors:

• Green — The analysis proved all the proof objectives valid.
• Red — The analysis disproved a proof objective and generated a counterexample that

falsified that objective.
• Orange — The analysis disproved a proof objective, but it could not generate a

counterexample or the proof objective remained undecided. This result occurs due to:

• A proof objective on a signal whose value the software cannot control, for example,
a Constant block

• A proof objective that depends on nonlinear computation
• A proof objective that creates an arithmetic error, such as division by zero
• Automatic stubbing being enabled, and the analysis encountering an unsupported

block whose operation it does not understand but that the analysis requires to
generate the counterexample

• The analysis timing out
• Limitations of the analysis engine

• Gray — The model object was not part of the analysis.

Highlight the analysis results on the example model:

1 In the log window for the ex_property_proving_example_basic analysis, click
Highlight analysis results on model.

The Proof Objective block is highlighted in red, which indicates that a proof objective
was falsified with a counterexample.

12-11



12 Proving Properties of a Model

The Simulink Design Verifier Results window appears.

As you click objects in the model, this window changes to display detailed analysis
results for that object.

Tip: By default, the Simulink Design Verifier Results window is always the topmost
visible window. To allow the window to move behind other window, click  and
clear Always on top.

2 Click the highlighted Proof Objective block.

12-12



 Prove Properties in a Model

The Simulink Design Verifier Results window indicates that the proof objective
that the output signal from the Compare to Zero was not 1 was disproved with a
counterexample.

Review Detailed Analysis Report

To create a detailed HTML analysis report:

1 In the Simulink Design Verifier log window, click Generate detailed analysis
report.

The HTML report opens in a browser window.
2 The report includes the following Table of Contents. Click a hyperlink to navigate

to particular section in the report.

3 In the Table of Contents, click Summary.

12-13



12 Proving Properties of a Model

The Summary provides an overview of the analysis results, and it indicates that
Simulink Design Verifier identified a counterexample that falsifies an objective in
your model.

4 Scroll back to the top of the browser window. In the Table of Contents, click Proof
Objectives Status.

The Objectives Falsified with Counterexamples table lists the proof objectives that
Simulink Design Verifier disproved using a counterexample that it generated. You
can locate the objective in your model window by clicking Proof Objective; the
software highlights the corresponding Proof Objective block in your model window.

5 In the Objectives Falsified with Counterexamples table, under the
Counterexample column, click 1.

12-14



 Prove Properties in a Model

This section displays information about proof objective 1 and provides details about
the counterexample that Simulink Design Verifier generated to disprove that
objective. In this counterexample, a signal value of 99 falsifies the objective that you
specified using the Proof Objective block. That is, 99 is not less than or equal to 0,
which causes the Compare To Zero block to return 0 (false) instead of 1 (true).

Review Harness Model

Create a harness model with counterexamples that falsify the proof objectives in your
model:

1 In the Simulink Design Verifier log window, click Create harness model.

The software creates a harness model named
ex_property_proving_example_basic_harness.

The harness model contains the following items:

• Signal Builder block named Inputs — A group of signals that falsify proof
objectives.

• Subsystem block named Test Unit — A copy of your model.
• DocBlock named Test Case Explanation — A textual description of the

counterexamples that the analysis generates.
• A Size-Type block — A subsystem that transmits signals from the Inputs block to

the Test Unit block. This block verifies that the size and data type of the signals
are consistent with the Test Unit block.

2 Double-click the Inputs block.

12-15



12 Proving Properties of a Model

The input signal 1 causes the output of the Compare to Zero block to be 0. This
counterexample violates the proof objective that specifies that the output of the
Compare to Zero block be 1.

Simulate Model with Counterexample

Simulate the harness model to observe the counterexample that falsifies the proof
objective in your model:

12-16



 Prove Properties in a Model

1 In the ex_property_proving_example_basic model window, select View >
Library Browser

2 From the Sinks library, copy a Scope block into your harness model window. The
Scope block allows you to see the value of the signal output by the Compare To Zero
block in your model.

3 In your harness model window, connect the output signal of the Test Unit subsystem
to the Scope block.

4 In your harness model window, select Simulation > Run to begin the simulation.

The Simulink software simulates the harness model.
5 In your harness model window, double-click the Scope block to open its display

window.

12-17



12 Proving Properties of a Model

The Scope block displays the value of the signal output by the Compare To Zero
block in your model. In this example, the Compare To Zero block returns 0 (false)
throughout the simulation, which falsifies the proof objective that the output of the
Compare to Zero block be 1 (true). The counterexample that the Signal Builder block
supplies falsifies the proof objective.

Review Analysis Results in the Model Explorer

As long as your model remains open, you can view the results of your most recent
Simulink Design Verifier analysis results in the Model Explorer.

In the Simulink Editor, select Analysis > Design Verifier  > Latest Results. The
Model Explorer opens, and the results of the latest Simulink Design Verifier analysis
appear in the right-hand pane.

For any Simulink Design Verifier analysis, from the Model Explorer, you can perform the
following tasks.

12-18



 Prove Properties in a Model

Task For more information

Highlight the analysis results on the
model.

“Highlighted Results on the Model” on page
13-2

Generate a detailed analysis report. “Simulink Design Verifier Reports” on page
13-27

Create the harness model, or if the harness
model already exists, open it.

If no counterexamples were created during
the analysis, this option is not available.

“Simulink Design Verifier Harness Models”
on page 13-16

View the data file. “Simulink Design Verifier Data Files” on
page 13-9

View the log file. “Simulink Design Verifier Log Files” on
page 13-50

After you close your model, you can no longer view the analysis results.

Customize Example Proof

Modify the simple Simulink model whose proof objective Simulink Design Verifier
disproved in the previous task. Specifically, customize the proof by adding and
configuring a Proof Assumption block:

1 In the MATLAB Command Window, type sldvlib.

The Simulink Design Verifier library opens.
2 Open the Objectives and Constraints sublibrary.
3 Copy the Proof Assumption block to your model.
4 In your model window, insert the Proof Assumption block between the Inport and

Compare To Zero blocks.
5 In your model, double-click the Proof Assumption block to access its attributes.

The Proof Assumption block parameter dialog box opens.
6 In the Values box, enter [-1, 0]. When proving properties of this model, Simulink

Design Verifier constrains the signal values entering the Compare To Zero block to
the specified range. If the input to the Compare to Zero block is always within this
range, the output of the Compare to Zero block will always be 1.

12-19



12 Proving Properties of a Model

7 Click Apply and then OK to apply your changes and close the Proof Assumption
block parameter dialog box.

8 Save the ex_property_proving_example_basic model and keep it open.

Reanalyze Example Model

Analyze the model that you modified to see how the Proof Assumption block affects the
property-proving analysis.

In the ex_property_proving_example_basic model window, select Analysis >
Design Verifier > Prove Properties > Model.

When the analysis is complete, the log window displays the options. There is no option to
create a harness model, because the analysis satisfied all proof objectives in your model,
so there are no counterexamples.

Review Results of Second Analysis

Review the results of the second analysis:

• “Review Results on the Model” on page 12-20
• “Review Analysis Report” on page 12-21

Review Results on the Model

Highlight the model to see the analysis results:

1 Click Highlight analysis results on model.

The Proof Objective is now highlighted in green.

12-20



 Prove Properties in a Model

2 Click the Proof Objective block.

The Simulink Design Verifier Results window shows that the proof objective that
states that the signal be 1 is valid.

Review Analysis Report

Review the analysis results in the detailed report:

1 Click Generate detailed analysis report.
2 In the Table of Contents, click Summary.

12-21



12 Proving Properties of a Model

The Summary chapter indicates that Simulink Design Verifier proved a proof
objective in the model.

3 The Constraints section lists the analysis constraint you specified in the Proof
Assumption block.

4 Scroll back to the top of the browser window. In the Table of Contents, click Proof
Objectives Status.

12-22



 Prove Properties in a Model

The Objectives Proven Valid table lists the proof objectives that Simulink Design
Verifier proved to be valid.

5 Scroll down to view the Properties chapter or go to the top of the browser window
and in the Table of Contents, click Properties.

The Proof Objective summary indicates that Simulink Design Verifier proved an
objective that you specified in your model. The Proof Assumption block restricts the
domain of the input signals to the interval [-1, 0]. Therefore, the software proves that
this interval does not contain values that are greater than zero, thereby satisfying
the proof objective.

Analyze Contradictory Models

If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and it cannot
analyze the model. You can have a contradiction if your model has Proof Assumption
blocks with incorrect parameters. For example, an assumption could state that a signal
must be between 0 and 5 when the signal is constant 10.

If the software detects a contradiction, all previous results are invalidated and the
software reports that all the properties are falsified.

12-23



12 Proving Properties of a Model

Prove Properties in a Large Model

A thorough proof of your model requires that Simulink Design Verifier search through all
reachable configurations of your model—even the ones that are reached only after long
time delays. The computation time and memory required to search a model completely
often make an exhaustive proof impractical.

“Prove Properties in Large Models” on page 14-27 gives detailed information about
strategies you can use to improve the performance of a property-proving analysis of a
large model.

12-24



 Prove System-Level Properties Using Verification Model

Prove System-Level Properties Using Verification Model

In this section...

“When to Use a Verification Model for Property Proving” on page 12-25
“About this Example” on page 12-25
“Understand the Verification Model” on page 12-25
“Prove the Properties of the Design Model” on page 12-26
“Fix the Verification Model” on page 12-27

When to Use a Verification Model for Property Proving

If your model has system-wide properties that affect the behavior of the model, you might
want to prove the properties without changing the design model. To do this, you create a
verification model that includes:

• Model block that references the design model
• One or more verification subsystems that define the properties and any required

constraints

About this Example

The design model sldvdemo_sbr_design models the logic for a seat belt reminder light.
If the ignition is turned on, the seat belts are unfastened, and the car exceeds a certain
speed, the seat belt reminder light turns on.

The sldvdemo_sbr_verification model is a verification model that defines some
constraints and verifies the properties in the sldvdemo_sbr_design model. The Model
block in the verification model references the design model, so that the verification logic
exists only in the verification model.

The sldvdemo_sbr_verification model contains a property that is falsified, because
a constraint is disabled. In the sldvdemo_sbl_verification_fixed model, the
constraint is enabled and all the properties are proven valid.

Understand the Verification Model

Take these steps to understand how the verification model works:

12-25



12 Proving Properties of a Model

1 Open the verification model:

sldvdemo_sbr_verification

The Design Model block is a Model block that references sldvdemo_sbr_design.
The SBR Stateflow chart in the design model assumes that the KEY input is initially
0.

2 Open the Safety Properties subsystem that specifies the properties of the design
model that you want to prove.

This subsystem contains a MATLAB Function block called MATLAB Property.
The code in this block specifies the property that the seat belt reminder should be on
when the ignition is on, the seat belt is not fastened, and the speed is less than 15:

3 Close the Safety Properties subsystem.
4 Open the Input Constraints subsystem.

This subsystem defines the following constraints:

• The key can have three positions: 0, 1, 2
• The speed is constrained to fall between 10 and 30.
• The key must start at 0 and can only change by one increment at a time. For

example, the key can change from 0 to 1 or 1 to 2, but not from 0 to 2. In this
verification model, this constraint is not enabled.

5 Close the Input Constraints subsystem, but keep the
sldvdemo_sbr_verification model open.

Prove the Properties of the Design Model

Analyze the sldvdemo_sbr_verification model to prove the properties:

1 In the sldvdemo_sbr_verification model window, to start the analysis, double-
click the Run button to start the analysis.

When the analysis completes, the Simulink Design Verifier log window indicates
that one objective was falsified.

2 To see which objective was falsified, click Highlight analysis results on model.

The Safety Properties subsystem is highlighted in red.
3 Open the Safety Properties subsystem and click the MATLAB Property block.

12-26



 Prove System-Level Properties Using Verification Model

The Simulink Design Verifier Results window indicates that the statement

sldv.prove(implies(activeCond,SeatBeltIcon))

was false during at least one time step.

4 Click View counterexample to see the signal values that violated this property.

The Signal Builder block opens with the counterexample. The KEY input was initially
2, which is invalid.

To validate the property specified in the Safety Properties subsystem, you have to make
sure that the initial value of KEY is 0.

Fix the Verification Model

The Input Constraints subsystem in the verification model contained three constraints.
The third constraint, which requires that the initial value of KEY be 0, and that KEY can
only change in increments of 1, is disabled.

12-27



12 Proving Properties of a Model

To see how this property is validated when you enable the third constraint:

1 In the sldvdemo_sbr_verification model, click Open Fixed Model.

The sldvdemo_sbr_verification_fixed verification model opens.
2 Open the Input Constraints subsystem.

This third constraint is now enabled so that KEY has an initial value of 0 and
changes in increments of 1.

3 Close the Input Constraints subsystem.
4 In the sldvdemo_sbr_verification_fixed model, to start the analysis, double-

click the Run block.

The analysis proves the validity of the property.

12-28



 Prove Properties in a Subsystem

Prove Properties in a Subsystem

If you have a large model, you can prove the properties of a subsystem in the model and
review the analyses in smaller, manageable reports. The workflow for proving properties
in a subsystem is:

1 Open the model that contains the subsystem.
2 Make the subsystem atomic.
3 Run Simulink Design Verifier using the Prove Properties of Subsystem option.
4 Review the results.

The tutorial in “Generate Test Cases for a Subsystem” on page 1-26 explains how to
generate test cases for the Controller subsystem in the Cruise Control Test Generation
model. The steps for proving properties are similar to those for generating test cases,
except that you select the Prove Properties of Subsystem option instead of the
Generate Tests for Subsystem option.

12-29



12 Proving Properties of a Model

Model Requirements

The Simulink Design Verifier block library includes a sublibrary Example Properties.
The Example Properties sublibrary includes:

• “Basic Properties” on page 12-30 — Four examples that demonstrate how to prove
basic properties.

• “Temporal Properties” on page 12-34 — Four examples that demonstrate how to
define temporal properties on Boolean signals

The workflow for using these examples in your model is:

1 Copy these examples into your Verification Subsystem block.
2 Adapt them, if required, for the specific properties that you want to prove.
3 Run the Simulink Design Verifier analysis to prove that the assertions in these

examples never fail.
4 If the assertion fails, the software creates a counterexample that causes the

assertion to fail and then generates a harness model.
5 On the harness model, execute the counterexample to confirm that the assertion fails

with that counterexample.

Basic Properties

To view the Basic Properties examples:

1 Open the Simulink Design Verifier block library. Type:

sldvlib

2 Double-click the Examples sublibrary.
3 Double-click the Basic Properties block that contains the examples.

The sections that follow describe each example in the Block Properties sublibrary in
detail.

Conditions that Trigger a Result

The Simulink Design Verifier Implies block allows you to test for conditions that trigger
a result. This example specifies that if condition A is true, result B must always be true.

12-30



 Model Requirements

Increasing or Decreasing Signals

The two examples in this section specify that a signal is either:

• Always increasing or staying constant
• Always decreasing or staying constant

12-31



12 Proving Properties of a Model

Exclusivity Operation

This example describes four conditions that should not be true at the same time.

12-32



 Model Requirements

Conditions with One True Element

This example specifies that only one of the four input signals can be true.

12-33



12 Proving Properties of a Model

Temporal Properties

To view the Temporal Properties examples:

1 Open the Simulink Design Verifier block library. Type:

sldvlib

2 Double-click the Temporal Properties sublibrary.
3 Double-click the Temporal Properties block that contains the examples.

The sections that follow describe each example in the Temporal Properties sublibrary in
detail.

Synchronize the Output with the Input

When the input In1 equals ACTIVE, the input In2 is set to INACTIVE after five time
steps.

12-34



 Model Requirements

Make a Signal Inactive After a Delay

In this example, after five consecutive time steps where the SENSOR_HIGH input is true,
the CMD signal becomes true. CMD is true as long as SENSOR_HIGH is true, unless the
block is reset by the MANUAL_RESET signal.

12-35



12 Proving Properties of a Model

Extend a True Signal

In this example, after the input becomes true, the output becomes true for the number
of time steps specified in the Detector block, in this case, 5. The input remains true for 5
time steps as well.

Test the Input Against a Specified Threshold

When the input In3 equals ON and the input In4 is less than the constant THRESHOLD,
In3 is set to OFF within five time steps.

12-36



13

Reviewing the Results

• “Highlighted Results on the Model” on page 13-2
• “Simulink Design Verifier Data Files” on page 13-9
• “Simulink Design Verifier Harness Models” on page 13-16
• “Export Test Cases to Simulink Test” on page 13-24
• “Simulink Design Verifier Reports” on page 13-27
• “Simulink Design Verifier Log Files” on page 13-50
• “Review Analysis Results” on page 13-52



13 Reviewing the Results

Highlighted Results on the Model

In this section...

“Results Review with Model Highlighting” on page 13-2
“Simulink Design Verifier Results Inspector” on page 13-2
“Enable Highlighted Results on a Model” on page 13-3
“Green Highlighting on Model” on page 13-5
“Red Highlighting on Model” on page 13-6
“Orange Highlighting on Model” on page 13-6
“Gray Highlighting on Model” on page 13-8

Results Review with Model Highlighting

When you analyze a model using Simulink Design Verifier, you can highlight the
analyzed model objects in one of four colors:

• Green
• Red
• Orange
• Gray

Model highlighting allows you to review the analysis results at a glance by viewing the
objects that are highlighted in the Simulink Editor.

Simulink Design Verifier Results Inspector

When a model is highlighted, you can click an object for which the analysis recorded
results. When you click the object, the Simulink Design Verifier Results Inspector
displays the detailed analysis results for that object.

The Results Inspector does not display detailed results for Stateflow state transition
tables, but analysis data for state transition tables is included in Simulink Design
Verifier reports, data files, and log files.

13-2



 Highlighted Results on the Model

Enable Highlighted Results on a Model

For test case generation or property proving analysis, to enable results highlighting on
the model after analysis is complete, do one of the following:

• Before the analysis, in the Configuration Parameters dialog box, on the Design
Verifier > Results pane, select Display the results of the analysis on the model.

• After the analysis, in the Simulink Design Verifier log window, select Highlight
analysis results on model.

For design error detection analysis, results highlighting on the model after analysis is
complete is enabled by default.

For all analysis types, you can also highlight results on the model during analysis. To do
this, in the Results Summary window, click Highlight.

13-3



13 Reviewing the Results

13-4



 Highlighted Results on the Model

In the Simulink Editor, results highlighting appears on the model. Model objects that the
analysis has not yet processed display in orange.

The Results Inspector also opens, displaying the elapsed time of the analysis and a
summary of status for analysis objectives.

Green Highlighting on Model

Objects that are highlighted in green have the following meaning for each type of
analysis.

Analysis mode Green highlighting means...

Design error detection One of the following:

• The analysis did not find overflow or division-by-zero errors.
• The analysis did not find dead logic
• The analysis did not find intermediate or output signals

outside the range of user-specified minimum and maximum
constraints.

• The analysis did not find out of bound array access errors.
Test generation The analysis found test cases that satisfy the test objectives.
Property proving The analysis proved all the proof objectives valid.

13-5



13 Reviewing the Results

Red Highlighting on Model

Objects that are highlighted in red have the following meaning, depending on the
analysis type.

Analysis mode Red highlighting means...

Design error detection One of the following:

• The analysis found at least one test case that causes
overflow or division-by-zero errors.

• The analysis found dead logic.
• The analysis found intermediate or output signals outside

the range of user-specified minimum and maximum
constraints.

• The analysis found at least one test case that causes an out
of bound array access error.

Test generation The analysis could not satisfy certain test objectives.
Property proving The analysis disproved a proof objective and generated a

counterexample that falsified that objective.

If your model contains at least one object highlighted in red, there may be further design
errors in your model that Simulink Design Verifier does not highlight in red. If an object
in your design causes run-time errors, Simulink Design Verifier may not be able to
determine further errors on objects that are downstream of or rely on the results of
the object that causes the run-time errors. Resolve the errors that cause the initial red
highlighting and re-run the analysis to determine if Simulink Design Verifier will also
highlight other objects in your model as red.

Orange Highlighting on Model

Objects that are highlighted in orange have the following meaning, depending on the
analysis type.

Analysis mode Orange highlighting means...

Design error detection For the highlighted model object, the analysis did not decide
at least one design error detection objective. This situation can
occur when:

13-6



 Highlighted Results on the Model

Analysis mode Orange highlighting means...

• The analysis is still in progress.
• The analysis times out.
• The analysis cannot decide a design error detection

objective because of division by zero or nonlinear
arithmetic.

• The software cannot decide a design error detection
objective because of stubbing. For more information, see
“Handle Incompatibilities with Automatic Stubbing” on
page 2-8.

• The software cannot decide a design error detection
objective because of limitations of the analysis engine. For
example, if the analysis encounters an unbounded while
loop, it performs an approximation. For information about
this approximation, see “While Loops” on page 2-18.

Test generation For the highlighted model object, the analysis did not decide at
least one test objective. This situation can occur when:

• The analysis is still in progress.
• The analysis times out.
• The analysis cannot decide a test objective because of

division by zero or nonlinear arithmetic.
• The software cannot decide a test objective because

of stubbing. For more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

• The software cannot decide a test objective because
of limitations of the analysis engine. For example, if
the analysis encounters an unbounded while loop, it
performs an approximation. For information about this
approximation, see “While Loops” on page 2-18.

13-7



13 Reviewing the Results

Analysis mode Orange highlighting means...

Property proving For the highlighted model object, the analysis did not decide at
least one proof objective. This situation can occur when:

• The analysis is still in progress.
• The analysis times out.
• A proof objective exists on a signal whose value the software

cannot control, for example, a Constant block.
• The analysis cannot decide a proof objective because of

division by zero or nonlinear arithmetic.
• The software cannot decide a proof objective because

of stubbing. For more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

• The software cannot decide a proof objective because
of limitations of the analysis engine. For example, if
the analysis encounters an unbounded while loop, it
performs an approximation. For information about this
approximation, see “While Loops” on page 2-18.

Gray Highlighting on Model

Objects that are highlighted in gray have the following meaning.

Analysis mode Gray highlighting means...

• Design error
detection

• Test generation
• Property proving

The model object was not part of the analysis.

13-8



 Simulink Design Verifier Data Files

Simulink Design Verifier Data Files

In this section...

“Data File Generation” on page 13-9
“Contents of sldvData Structure” on page 13-9
“Model Information Fields in sldvData” on page 13-10
“Simulate Models with Data Files” on page 13-15
“Load Results from Data Files” on page 13-15

Data File Generation

Simulink Design Verifier generates a data file when it completes its analysis. The data
file is a MAT-file that contains a structure named sldvData. This structure stores all
the data the software gathers and produces during the analysis. Although the software
displays the same data graphically in the harness model and report, you can use the data
file to conduct your own analysis or to generate a custom report.

By default, the Save test data to file parameter is enabled.

Contents of sldvData Structure

When Simulink Design Verifier completes its analysis, it produces a MAT-file that
contains a structure named sldvData. To explore the contents of the sldvData
structure:

1 Generate test cases for the sldvdemo_flipflop model:

sldvdemo_flipflop;

sldvrun('sldvdemo_flipflop');

2 To load the data file, at the MATLAB prompt, enter the following command:
load('sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat')

The MATLAB software loads the sldvData structure into its workspace.
This structure contains the Simulink Design Verifier analysis results of the
sldvdemo_flipflop model.

3 Enter sldvData at the MATLAB command line to display the field names that
constitute the structure:

13-9



13 Reviewing the Results

sldvData = 

       ModelInformation: [1x1 struct]

    AnalysisInformation: [1x1 struct]

           ModelObjects: [1x2 struct]

            Constraints: []

             Objectives: [1x12 struct]

              TestCases: [1x4 struct]

                Version: '2.1'

Model Information Fields in sldvData

The following sections describe the fields in the sldvData structure:

• “ModelInformation Field” on page 13-10
• “AnalysisInformation Field” on page 13-11
• “ModelObjects Field” on page 13-11
• “Constraints Field” on page 13-12
• “Objectives Field” on page 13-12
• “TestCases Field / CounterExamples Field” on page 13-13
• “Version Field” on page 13-14

ModelInformation Field

In the sldvData structure, the ModelInformation field contains information
about the model you analyzed. The following table describes each subfield of the
ModelInformation field.

Subfield Name Description

Name The model name.
Version The model number.
Author The user name.
TimeStamp The last date and time the model was updated.
SubsystemPath The full path name of the subsystem (if any) that was analyzed.
ExtractedModel The name of the model extracted (if any) to analyze the

subsystem (if any) specified in SubsystemPath.

13-10



 Simulink Design Verifier Data Files

Subfield Name Description

ReplacementModel The name of the model (if any) that contains the block
replacements.

HarnessOwnerModel The name of the owner model of the Simulink Test™ test
harness (if any) being analyzed.

AnalysisInformation Field

In the sldvData structure, the AnalysisInformation field lists settings of particular
analysis options and related information. The following table describes each subfield of
the AnalysisInformation field.

Subfield Name Description

Status The completion status of the Simulink Design Verifier analysis.
AnalysisTime Double that specifies the length of the analysis in seconds.
Options Deep copy of the Simulink Design Verifier options object used

during the analysis.
InputPortInfo Cell array of structures that specifies information about each

Inport block in the top-level system.
OutputPortInfo Cell array of structures that specifies information about each

Outport block in the top-level system.
SampleTimes For internal use only.
Parameters For internal use only.
AbstractedBlocks For internal use only.
Approximations A structure that describes the approximations performed during

the analysis. For more information about approximations, see
“Approximations” on page 2-16.

ReplacementInfo For internal use only.

ModelObjects Field

In the sldvData structure, the ModelObjects field lists the model items and their
associated objectives. The following table describes each subfield of the ModelObjects
field.

13-11



13 Reviewing the Results

Subfield Name Description

descr The full path to a model object, including objects in a Stateflow
chart.

typeDesc The block type of the model object.
slPath The full path to a Simulink model object.
sfObjType The type of a Stateflow object, e.g., S for state and T for

transition.
sfObjNum Integer that represents the unique identifier of a Stateflow

object.
sid For internal use only.
designSid For internal use only.
replacementSid For internal use only.
objectives Vector of integers that represents the indices of objectives

associated with a model object.

Constraints Field

In the sldvData structure, the Constraints field lists information about specified
minimum and maximum values (if any) on input ports in your model. The following table
describes the subfield of the Constraints field.

Subfield Name Description

DesignMinMax Cell array of structures that include the
name and minimum and maximum values
for each input port for which values are
specified.

Objectives Field

In the sldvData structure, the Objectives field lists information about each objective,
such as its type, status, and description. The following table describes each subfield of the
Objectives field.

Subfield Name Description

type The type of an objective.

13-12



 Simulink Design Verifier Data Files

Subfield Name Description

status The status of an objective.
descr The description of an objective.
label The label of an objective.
outcomeValue Integer that specifies an objective's outcome.
coveragePointIdx Integer that represents the index of a coverage point with which

an objective is associated.
linkInfo For internal use only.
range For internal use only.
modelObjectIdx Integer that represents the index of a model object with which

an objective is associated.
analysistime Integer that represents the analysis time for an object.
testCaseIdx Integer that represents the index of a test case or

counterexample that addresses an objective.

TestCases Field / CounterExamples Field

In the sldvData structure, this field can have two names, depending on the type of
check:

• If you set the Mode parameter to Design error detection, the
CounterExamples field lists information about each test case that results in an
integer overflow or division-by-zero error.

• If you set the Mode parameter to Test generation, the TestCases field lists
information about each test case, such as its signal values and the test objectives it
achieves.

• If you set the Mode parameter to Property proving, the CounterExamples field
lists information about each counterexample and the proof objective it falsifies.

The following table describes each subfield of the TestCases / CounterExamples field.

Subfield Name Description

timeValues Vector that specifies the time values associated with signals in a
test case or counterexample.

13-13



13 Reviewing the Results

Subfield Name Description

dataValues Cell array that specifies the data values associated with signals
in a test case or counterexample.

paramValues Structure that specifies the parameter values associated with a
test case or counterexample. Its fields include:

name — The name of a parameter.

value — Number that specifies the value of a parameter.

noEffect — Logical value that specifies whether a parameter's
value affects an objective.

stepValues Vector that specifies the number of time steps that comprise
signals in a test case or counterexample.

objectives Structure that specifies objectives that a test case or a
counterexample addresses. Its fields include:

objectiveIdx — Integer that represents the index of an
objective that a test case achieves or a counterexample falsifies.

atTime — Time value at which either a test case achieves an
objective or a counterexample falsifies an objective.

atStep — Time step at which either a test case achieves an
objective or a counterexample falsifies an objective.

dataNoEffect Cell array of logical vectors that specifies whether a signal's
data values affect an objective. The vector uses 1 to indicate
that a signal's data value does not affect an objective; otherwise,
it uses 0.

expectedOutput Cell array of vectors that specifies the output values that result
from simulating the model using the test case signals. Each cell
represents the output values associated with a different Outport
block in the top-level system. This subfield is populated if you
select Include expected output values.

Version Field

In the sldvData structure, the Version field specifies the version of Simulink Design
Verifier that analyzed the model.

13-14



 Simulink Design Verifier Data Files

Simulate Models with Data Files

The sldvruntest function simulates a model using test cases or counterexamples that
reside in a Simulink Design Verifier data file:

1 Simulate the sldvdemo_flipflop model and generate test cases:

sldvdemo_flipflop

2 Save the location of the data file generated after analyzing the model:
sldvDataFile = 'sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat'

3 Use the sldvruntest function to simulate the sldvdemo_flipflop model using
test case 2 in the data file:

[ outdata ] = sldvruntest('sldvdemo_flipflop', sldvDataFile, 2)

The output from sldvruntest is an array of Simulink.SimulationOutput
class (Simulink) objects.

4 Examine the output data from the first test case using the methods of the
Simulink.SimulationOutput object:

tout_sldvruntest = outdata(1).find('tout_sldvruntest');

xout_sldvruntest = outdata(1).find('xout_sldvruntest');

yout_sldvruntest = outdata(1).find('yout_sldvruntest');

logsout_sldvruntest = outdata(1).find('logsout_sldvruntest');

Load Results from Data Files

You can load previous analysis results for a model from a data file. For more information,
see “Load Previous Results” on page 13-52 and sldvloadresults.

13-15



13 Reviewing the Results

Simulink Design Verifier Harness Models

In this section...

“Harness Model Generation” on page 13-16
“Create a Harness Model” on page 13-16
“Anatomy of a Harness Model” on page 13-17
“Configuration of the Harness Model” on page 13-21
“Simulate the Harness Model” on page 13-21

Harness Model Generation

During or after a Simulink Design Verifier analysis, you can create a harness model.

The contents of the harness model depend on the value of the Mode parameter, set in the
Configuration Parameters dialog box on the Design Verifier pane:

• Design error detection — The harness model contains test cases that result in
errors during simulation.

• Test generation — The harness model contains test cases that achieve test
objectives.

• Property proving — The harness model contains counterexamples that falsify
proof objectives.

By default, the Generate separate harness model after analysis parameter is
disabled.

Note: The Simulink Design Verifier software can generate a harness model only when
the top level of the system you are analyzing contains an Inport block.

Create a Harness Model

To create a harness model before or after the analysis, do one of the following:

• Before the analysis, in the Configuration Parameters dialog box, on the Design
Verifier > Results pane, select Generate separate harness model after
analysis.

13-16



 Simulink Design Verifier Harness Models

• After the analysis, in the Simulink Design Verifier log window, select Create
harness model.

Anatomy of a Harness Model

The Simulink Design Verifier software produces a harness model that looks like this:

The harness model contains the following items:

• Inputs — This Signal Builder block contains signals that comprise the test cases or
counterexamples that Simulink Design Verifier generated. The Signal Builder block
contains signals only for input signals that are used in the model. If an input signal
has no effect on the output of the model, that signal is not included in the Signal
Builder block.

Double-click the Inputs block to open the Signal Builder dialog box and view its
signals. Each signal group represents a unique test case or counterexample. In the
Signal Builder dialog box, select a tab to view the signals associated with a particular
test case or counterexample.

The following Signal Builder block shows the signals for Test Case 7
after Simulink Design Verifier performs test generation analysis on the
sldvdemo_cruise_control model with the default options.

13-17



13 Reviewing the Results

If you select the LongTestcases option of the Test suite optimization parameter,
the analysis creates fewer, longer test cases. For example, if you select the
LongTestcases option for the sldvdemo_cruise_control model, the analysis
produces one long test case instead of nine shorter test cases. The following Signal
Builder dialog box shows the signals for the long test case.

13-18



 Simulink Design Verifier Harness Models

Note: For more information about the Signal Builder dialog box, see “Signal Groups”
(Simulink).

• Size-Type — This Subsystem block transmits signals from the Inputs block to
the Test Unit block. It verifies that the size and data type of the of the signals are
consistent with the Test Unit block.

13-19



13 Reviewing the Results

• Test Unit — This Subsystem block contains a copy of the original model that
Simulink Design Verifier analyzed.

If you select the Reference input model in generated harness on the Design
Verifier > Results pane, the Test Unit is a Model block that references the model
you are analyzing, not a subsystem.

• Test Case Explanation — This DocBlock block documents the test cases or
counterexamples that Simulink Design Verifier generates. Double-click the Test Case
Explanation block to view a description of each test case or counterexample. The block
lists either the test objectives that each test case achieves (as in the next graphic) or
the proof objectives that each counterexample falsifies.

13-20



 Simulink Design Verifier Harness Models

Configuration of the Harness Model

After Simulink Design Verifier generates the harness model, it has the following
settings:

• The harness model start time is always 0. If the original model uses a nonzero start
time, the software ignores this and uses 0 for the simulation start time for test cases
and counterexamples.

• The harness model stop time always equals the stop time of the longest test case in
the Signal Builder dialog box.

• By default, the software enables coverage reporting for harness models that contain
test cases. Although it enables coverage reporting with particular options selected,
you can customize the settings to meet your needs. For more information, see
“Customize Requirements Report” (Simulink Verification and Validation).

• By default, if you select Ignore objective based on filter and provide a coverage
filter file for the Test Unit, the coverage filter file also applies to the harness model.
The coverage objective filter parameters are in the Configuration Parameters dialog
box, on the Test Generation pane.

Simulate the Harness Model

The harness model enables you to simulate a copy of your original model using the test
cases or counterexamples that Simulink Design Verifier generates. Using the harness
model, you can simulate:

• A counterexample
• A single test case, for which the Simulink Verification and Validation software

collects and displays model coverage information
• All test cases, for which the Simulink Verification and Validation software collects

and displays cumulative model coverage information

Note: If you analyze a model that simulates with sample time warnings, when you
simulate the harness model, the warnings may be reported as errors, causing the
simulation to fail.

To simulate a single test case or counterexample:

1 In the harness model, double-click the Inputs block.

13-21



13 Reviewing the Results

The Signal Builder dialog box appears.
2 In the Signal Builder dialog box, select the tab associated with a particular test case

or counterexample.

The Signal Builder dialog box displays the signals that comprise the selected test
case or counterexample.

3
In the Signal Builder dialog box, click the Start simulation button .

The Simulink software simulates the harness model using the signals associated
with the selected test case or counterexample. When simulating a test case, the
Simulink Verification and Validation software collects model coverage information
and displays a coverage report.

To simulate all test cases and measure their combined model coverage:

1 In the harness model, double-click the Inputs block.

The Signal Builder dialog box appears.
2

In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates the harness model using all test cases, while the
Simulink Verification and Validation software collects model coverage information
and displays a coverage report.

When you click Run all, the software simulates all the test cases using the stop time
for the harness model. The stop time equals the stop time for the longest test case, so
you may accumulate additional coverage when you simulate the shorter test cases.

If the Test Unit in the harness model is a subsystem, the values of the Simulink
simulation optimization parameters on the Configuration Parameters dialog box may
impact your coverage results.

Note: The simulation optimization parameters are on the following Configuration
Parameters dialog box panes:

• Optimization pane
• Optimization > Signals and Parameters pane

13-22



 Simulink Design Verifier Harness Models

• Optimization > Stateflow pane

See “Simulating with Signal Groups” (Simulink) for more information about simulating
models containing Signal Builder blocks.

13-23



13 Reviewing the Results

Export Test Cases to Simulink Test

In this section...

“Overall Workflow” on page 13-24
“Test Case Generation Example” on page 13-24

Model verification often requires repeated testing to achieve certain objectives or
coverage criteria. If you run repeated tests, consider using the Test Manager in Simulink
Test to structure your test cases, archive test results, and generate reports. You can
generate test cases using Simulink Design Verifier and export the test inputs to new test
cases automatically created in the Simulink Test Manager.

Overall Workflow

Exporting generated inputs to new test cases in Simulink Test follows this workflow.

1 Choose an existing Simulink Design Verifier results file, or generate new results by
analyzing your model.

• If you use an existing results file, you can load results by either:

• Using the Simulink Test command sltest.import.sldvData.
• Using Simulink Design Verifier menu items. In the model, select Analysis

> Design Verifier > Results > Load. Select the MAT file with the analysis
results.

• If you run a model analysis, the Design Verifier Results Summary window
appears after the analysis completes.

2 In the results summary window, click Export test cases to Simulink Test.
3 Select an existing test harness, or create a test harness.
4 Simulink Test generates the test file and test harness. In the Test Manager, expand

the new test file in the Test Browser to see the individual test cases.

Test Case Generation Example

This example shows how to generate test cases to achieve coverage objectives for a
controller subsystem. It also shows how to add functional test cases from test harnesses
in the model. The example requires a Simulink Test license.

13-24



 Export Test Cases to Simulink Test

The model is a closed-loop heatpump system. The controller accepts the measured room
temperature and set temperature inputs. The controller outputs a bus of three signals
controlling the fan, heat pump, and the direction of the heat pump (heat or cool). The
model contains a harness that tests heating and cooling scenarios.

1 Open the model.

open_system(fullfile(docroot,'toolbox','sltest','examples',...

'sltestTestCaseFromDVExample.slx'));

2 Set the current working folder to a writable folder.
3 In the model, generate tests for the Controller subsystem. Right-click the Controller

block and select Design Verifier > Generate Tests for Subsystem.
4 In the Results Summary window, click Export test cases to Simulink Test.
5 In the Harness Selection dialog box, select New Harness. Click OK.

The Test Manager displays six new test cases in the test file.

6 Click the harness badge to preview the new test harness.

13-25



13 Reviewing the Results

7 Add a test case to the other test harness in the model. In the Test Manager, hover

over the new test file name and click the Synchronize Test File button .
8 The Test Manager prompts you to add tests for the Requirement2 test harness.

Select Simulation for the test type, and click Update Test File.

The Test Manager adds the Requirement2 test case to the test file.

See Also
sltest.import.sldvData

13-26



 Simulink Design Verifier Reports

Simulink Design Verifier Reports

In this section...

“Simulink Design Verifier Report Generation” on page 13-27
“Create Analysis Reports” on page 13-27
“Front Matter” on page 13-28
“Summary Chapter” on page 13-28
“Analysis Information Chapter” on page 13-28
“Derived Ranges Chapter” on page 13-33
“Objectives Status Chapters” on page 13-34
“Model Items Chapter” on page 13-41
“Design Errors Chapter” on page 13-42
“Test Cases Chapter” on page 13-43
“Properties Chapter” on page 13-48

Simulink Design Verifier Report Generation

After an analysis, Simulink Design Verifier can generate an HTML report that contains
detailed information about the analysis results.

The analysis report contains hyperlinks that allow you to:

• Navigate to a specific part of the report
• Navigate to the object in your Simulink model for which the analysis recorded results

You can also generate an additional PDF version of the Simulink Design Verifier report.

Create Analysis Reports

To create a detailed analysis report before or after the analysis, do one of the following:

• Before the analysis, in the Configuration Parameters dialog box, on the Design
Verifier > Report pane, select Generate report of the results. If you want to save
an additional PDF version of the Simulink Design Verifier report, select Generate
additional report in PDF format.

13-27



13 Reviewing the Results

• After the analysis, in the Simulink Design Verifier log window, you can choose HTML
or PDF format and Generate detailed analysis results.

Front Matter

The report begins with two sections:

• “Title” on page 13-28
• “Table of Contents” on page 13-28

Title

The title section lists the following information:

• Model or subsystem name Simulink Design Verifier analyzed
• User name associated with the current MATLAB session
• Date and time that Simulink Design Verifier generated the report

Table of Contents

The table of contents follows the title section. Clicking items in the table of contents
allows you to navigate quickly to particular chapters in the report.

Summary Chapter

The Summary chapter of the report lists the following information:

• Name of the model
• Analysis mode
• Analysis status
• Status of objectives analyzed

Analysis Information Chapter

The Analysis Information chapter of the report includes the following sections:

• “Model Information” on page 13-29

13-28



 Simulink Design Verifier Reports

• “Analysis Options” on page 13-29
• “Unsupported Blocks” on page 13-30
• “Constraints” on page 13-31
• “Block Replacements Summary” on page 13-31
• “Approximations” on page 13-32

Model Information

The Model Information section provides the following information about the current
version of the model:

• Path and file name of the model that Simulink Design Verifier analyzed
• Model version
• Date and time that the model was last saved
• Name of the person who last saved the model

Analysis Options

The Analysis Options section provides information about the Simulink Design Verifier
analysis settings.

The Analysis Options section lists the parameters that affected the Simulink Design
Verifier analysis. If you enabled coverage filtering, the name of the filter file is included
in this section.

13-29



13 Reviewing the Results

Note: For more information about these parameters, see “Simulink Design Verifier
Options” on page 15-2.

Unsupported Blocks

If your model includes unsupported blocks, by default, automatic stubbing is enabled to
allow the analysis to proceed. With automatic stubbing enabled, the software considers
only the interface of the unsupported blocks, not their actual behavior. This technique

13-30



 Simulink Design Verifier Reports

allows the software to complete the analysis. However, the analysis may achieve only
partial results if any of the unsupported model blocks affect the simulation outcome.

The Unsupported Blocks section appears only if the analysis stubbed unsupported blocks;
it lists the unsupported block in a table, with a hyperlink to the block in the model.

For more information about automatic stubbing, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.

Constraints

The Constraints section provides information about test conditions that Simulink Design
Verifier applied when it analyzed a model.

You can navigate to the constraint in your model by clicking the hyperlink in the
Constraints table. The software highlights the corresponding Test Condition block in
your model window and opens a new window showing the block in detail.

Block Replacements Summary

The Block Replacements Summary provides an overview of the block replacements that
Simulink Design Verifier executed. It appears only if Simulink Design Verifier replaced
blocks in a model.

13-31



13 Reviewing the Results

Each row of the table corresponds to a particular block replacement rule that Simulink
Design Verifier applied to the model. The table lists the following:

• Name of the file that contains the block replacement rule and the value of the
BlockType parameter the rule specifies

• Description of the rule that the MaskDescription parameter of the replacement
block specifies

• Names of blocks that Simulink Design Verifier replaced in the model

To locate a particular block replacement in your model, click on the name for that
replacement in the Replaced Blocks column of the table; the software highlights the
affected block in your model window and opens a new window that displays the block in
detail.

Approximations

Each row of the Approximations table describes a specific type of approximation that
Simulink Design Verifier used during its analysis of the model.

13-32



 Simulink Design Verifier Reports

Note: Review the analysis results carefully when the software uses approximations. In
rare cases, an approximation may result in test cases that fail to achieve test objectives
or counterexamples that fail to falsify proof objectives. For example, a floating-point
round-off error might prevent a signal from exceeding a designated threshold value.

Derived Ranges Chapter

In a design error detection analysis, the analysis calculates the derived ranges of the
signal values for the Outports for each block in the model. This information can help you
identify the source of data overflow or division-by-zero errors.

The table in the Derived Ranges chapter of the analysis report lists these bounds.

13-33



13 Reviewing the Results

Objectives Status Chapters

This section of the report provides information about all objectives in a model, including
an objective's type, the model item to which it corresponds, and its description.

• “Design Error Detection Objectives Status” on page 13-34
• “Test Objectives Status” on page 13-36
• “Proof Objectives Status” on page 13-38
• “Objectives Undecided” on page 13-39
• “Objectives Undecided Due to Division by Zero” on page 13-40
• “Objectives Undecided Due to Nonlinearities” on page 13-40
• “Objectives Undecided Due to Stubbing” on page 13-40

Design Error Detection Objectives Status

If you run a design error detection analysis, the Design Error Detection Objectives
Status section can include the following tables:

• “Active Logic” on page 13-34
• “Dead Logic” on page 13-35
• “Objectives Proven Valid” on page 13-36
• “Objectives Falsified with Test Cases” on page 13-36

Active Logic

The Active Logic section lists the model items for which the analysis found active logic.
The following image shows a portion of the Active Logic section of the generated analysis
report for the sldvdemo_fuelsys_logic_simple example model.

13-34



 Simulink Design Verifier Reports

Dead Logic

The Dead Logic section lists the model items for which the analysis found dead logic.
The following image shows the Dead Logic section of the generated analysis report for
the sldvdemo_fuelsys_logic_simple example model.

13-35



13 Reviewing the Results

Objectives Proven Valid

The Objectives Proven Valid section lists the design error detection objectives that the
analysis proved valid. For these objectives, the analysis determined that the described
design errors cannot occur.

Objectives Falsified with Test Cases

The Objectives Falsified with Test Cases section lists the objectives for which the
analysis found test cases that demonstrate design errors.

Test Objectives Status

If you run a test case generation analysis, the Test Objectives Status section can
include the following tables:

13-36



 Simulink Design Verifier Reports

• “Objectives Satisfied” on page 13-37
• “Objectives Proven Unsatisfiable” on page 13-37

Objectives Satisfied

The Objectives Satisfied section lists test objectives that the analysis satisfied.

Objectives Proven Unsatisfiable

The Objectives Proven Unsatisfiable section lists the test objectives that the analysis
determined could not be satisfied.

In the following example, the Stateflow chart Mode Logic updates at every time step, so
the implicit event tick is never false. The analysis cannot satisfy condition coverage for
the temporal event after(4, tick). For this and other unsatisfiable objectives in the
model, the report lists the type, model item, and description.

13-37



13 Reviewing the Results

Proof Objectives Status

If you run a property-proving analysis, the Proof Objectives Status section can
include:

• “Objectives Proven Valid” on page 13-38
• “Objectives Falsified with Counterexamples” on page 13-39

Objectives Proven Valid

The Objectives Proven Valid section lists the proof objectives that the analysis proved
valid.

13-38



 Simulink Design Verifier Reports

Objectives Falsified with Counterexamples

The Objectives Falsified with Counterexamples section lists the proof objectives
that the analysis disproved. In this example, the software generated at least one
counterexample that falsifies the specified objective.

Objectives Undecided

For all types of objectives, the Objectives Undecided section lists the objectives for
which the analysis was unable to determine an outcome in the allotted time.

In the following property-proving example, either the software exceeded its analysis
time limit (which the Maximum analysis time parameter specifies), or you aborted the
analysis before it completed processing these objectives.

13-39



13 Reviewing the Results

Objectives Undecided Due to Division by Zero

For all types of objectives, the Objectives Undecided Due to Division by Zero section
lists objectives that the analysis was unable to decide because of division by zero errors
in the associated model items. To detect division by zero errors before running further
analysis on your model, follow the procedure in “Detect Integer Overflow and Division-
by-Zero Errors” on page 6-26.

Objectives Undecided Due to Nonlinearities

For all types of objectives, the Objectives Undecided Due to Nonlinearities
section lists the objectives that the analysis was unable to decide because they require
computation of nonlinear arithmetic. Simulink Design Verifier does not support
nonlinear arithmetic or nonlinear logic.

Objectives Undecided Due to Stubbing

For all types of objectives, the Objectives Undecided Due to Stubbing section
lists model items with objectives that the analysis was unable to decide because
of stubbing. These can include objectives that, in releases prior to R2013b, were

13-40



 Simulink Design Verifier Reports

marked as Objectives Satisfied – No Test Case or Objectives Falsified – No
Counterexample.

Model Items Chapter

The Model Items chapter of the report includes a table for each object in the model that
defines coverage objectives. The table for a particular object lists all of the associated
objectives, the objective types, objective descriptions, and the status of each objective at
the end of the analysis.

The table for an individual object in the model will look similar to this
one for the Discrete-Time Integrator in the PI Controller subsystem of the
sldvdemo_cruise_control example model.

13-41



13 Reviewing the Results

To highlight a given object in your model, click View at the upper-left corner of the table;
the software opens a new window that displays the object in detail. To view the details of
the test case that was applied to a specific objective, click the test case number in the last
column of the table.

Design Errors Chapter

If you run a design error detection analysis, the report includes a Design Errors
chapter. This chapter includes sections that summarize the design errors the analysis
validated or falsified:

• “Table of Contents” on page 13-42
• “Summary” on page 13-42
• “Test Case” on page 13-43

Table of Contents

Each Design Errors chapter contains a table of contents. Each item in the table of
contents is a hyperlink to results about a specific design error.

Summary

The Summary section lists:

• The model item
• The type of design error that was detected (overflow or division by zero)
• The status of the analysis (Falsified or Proven Valid)

In the following example, the software analyzed the sldvdemo_debounce_falseprop
model to detect design errors. The analysis detected an overflow error in the Sum block
in the Verification Subsystem named Verify True Output.

13-42



 Simulink Design Verifier Reports

Test Case

The Test Case section lists the time step and corresponding time at which the test case
falsified the design error objective. The Inport block raw had a value of 255, which caused
the overflow error.

Test Cases Chapter

If you run a test generation analysis, the report includes a Test Cases chapter. This
chapter includes sections that summarize the test cases the analysis generated:

• “Table of Contents” on page 13-43
• “Summary” on page 13-43
• “Objectives” on page 13-44
• “Generated Input Data” on page 13-44
• “Expected Output” on page 13-45
• “Combined Objectives” on page 13-46
• “Long Test Cases” on page 13-47

Table of Contents

Each Test Cases chapter contains a table of contents. Each item in the table of contents
is a hyperlink to information about a specific test case.

Summary

The Summary section lists:

13-43



13 Reviewing the Results

• Length of the signals that comprise the test case
• Total number of test objectives that the test case achieves

Objectives

The Objectives section lists:

• The time step at which the test case achieves that objective.
• The time at which the test case achieves that objective.
• A link to the model item associated with that objective. Clicking the link highlights

the model item in the Simulink Editor.
• The objective that was achieved.

Generated Input Data

For each input signal associated with the model item, the Generated Input Data section
lists the time step and corresponding time at which the test case achieves particular test
objectives. If the signal value does not change over those time steps, the table lists the
time step and time as ranges.

13-44



 Simulink Design Verifier Reports

Note: The Generated Input Data table displays a dash (–) instead of a number as a signal
value when the value of the signal at that time step does not affect the test objective. In
the harness model, the Inputs block represents these values with zeros unless you enable
the Randomize data that does not affect outcome parameter (see “Randomize data
that do not affect the outcome” on page 15-75).

Expected Output

If you select the Include expected output values on the Design Verifier > Results
pane of the Configuration Parameters dialog box, the report includes the Expected
Output section for each test case. For each output signal associated with the model item,
this table lists the expected output value at each time step.

13-45



13 Reviewing the Results

Combined Objectives

If you set the Test suite optimization option to CombinedObjectives (the default),
the Test Cases chapter may include individual information about many test cases.

13-46



 Simulink Design Verifier Reports

Long Test Cases

If you set the Test suite optimization option to LongTestcases, the Test Cases
chapter in the report includes fewer sections about longer test cases.

13-47



13 Reviewing the Results

Properties Chapter

If you run a property-proving analysis, the report includes a Properties chapter. This
chapter includes sections that summarize the proof objectives and any counterexamples
the software generated:

• “Table of Contents” on page 13-48
• “Summary” on page 13-48
• “Counterexample” on page 13-49

Table of Contents

Each Properties chapter contains a table of contents. Each item in the table of contents is
a hyperlink to information about a specific property that was falsified.

Summary

The Summary section lists:

13-48



 Simulink Design Verifier Reports

• The model item that the software analyzed
• The type of property that was evaluated
• The status of the analysis

In the following example, the software analyzed the
sldvdemo_cruise_control_verification model for property proving. The analysis
proved that the input to the Assertion block named BrakeAssertion was nonzero.

Counterexample

The Counterexample section lists the time step and corresponding time at which the
counterexample falsified the property. This section also lists the values of the signals at
that time step.

13-49



13 Reviewing the Results

Simulink Design Verifier Log Files

Every time you analyze a model, Simulink Design Verifier creates a log file. To view the
log file, click View Log in the Simulink Design Verifier log window.

The log file contains a list of the analysis results for each object in the model. The content
of the log file corresponds to the analysis results displayed in the log window during the
analysis.

13-50



 Simulink Design Verifier Log Files

13-51



13 Reviewing the Results

Review Analysis Results

In this section...

“View Active Results” on page 13-52
“Load Previous Results” on page 13-52
“Explore Results” on page 13-53

View Active Results

After analysis is complete, the Simulink Design Verifier Results Summary window
opens, showing different ways you can use the results. See “Explore Results” on page
13-53.

If you close the Results Summary window so you can fix the cause of any analysis errors
in your model, you might need to review the analysis results again. If you have not closed
your model since you ran the analysis, you can reopen the latest analysis results for your
model. In the Simulink Editor, select Analysis > Design Verifier > Results > Active.
The Results Summary window reopens with the latest analysis results for your model.

You can also view Simulink Design Verifier analysis results in the Model Explorer.

Load Previous Results

If you want to review results of a previous analysis on a model, you can load these results
from the analysis data file. In the Simulink Editor, select Analysis > Design Verifier 
> Results > Load. Browse and select the data file that corresponds to the analysis you
want to review.

For more information on analysis data files, see “Simulink Design Verifier Data Files” on
page 13-9.

If you load analysis results for a model from a data file that was generated with a
previous version of that model, you might see unexpected effects. To avoid inconsistencies
between your model and analysis results data, when you load results for a model, choose
a data file that contains results from the same version of that model.

13-52



 Review Analysis Results

Explore Results

With active or previous analysis results loaded in the Model Explorer or Results
Summary window, you can perform the following tasks.

Task For more information

Highlight the analysis results on the
model.

“Highlighted Results on the Model” on page
13-2

Generate a detailed analysis report. “Simulink Design Verifier Reports” on page
13-27

Create the harness model, or if the harness
model already exists, open it.

You will not be able to create the harness
model if:

• No design error objectives were falsified
• No test cases were generated
• No counterexamples were created

“Simulink Design Verifier Harness Models”
on page 13-16

View the data file. “Simulink Design Verifier Data Files” on
page 13-9

View the log file. “Simulink Design Verifier Log Files” on
page 13-50

13-53





14

Analyzing Large Models and
Improving Performance

• “Sources of Model Complexity” on page 14-2
• “Analyze a Large Model” on page 14-3
• “Increase Allocated Memory for Analysis Report Generation” on page 14-8
• “Manage Model Data to Simplify the Analysis” on page 14-9
• “Partition Model Inputs for Incremental Test Generation” on page 14-13
• “Bottom-Up Approach to Model Analysis” on page 14-15
• “Extract Subsystems for Analysis” on page 14-16
• “Logical Operations” on page 14-23
• “Models with Large Verification State Space” on page 14-24
• “Counters and Timers” on page 14-25
• “Prove Properties in Large Models” on page 14-27



14 Analyzing Large Models and Improving Performance

Sources of Model Complexity

Some characteristics of Simulink models can cause problems during a Simulink Design
Verifier analysis in the following ways:

• Complexity of model inputs due to:

• Large number of inputs (The number of inputs can vary, depending on the
individual model.)

• Types of inputs (floating-point values, for example)
• The way the inputs affect the model state and the objectives of the analysis

• Number of possible simulation paths through a model
• Portions of the model that cannot be reached
• Large counters in the model

The topics in “Complexity Reduction” describe techniques designed to reduce the impact
of this complexity and achieve the best performance from Simulink Design Verifier.

Most of these techniques focus on test generation for large models. However, you can
use many of them to detect design errors or prove the properties of a large model and
generate counterexamples when a property is disproved. In addition, “Prove Properties in
Large Models” on page 14-27 describes specific techniques for proving properties in a
large model.

14-2



 Analyze a Large Model

Analyze a Large Model

In this section...

“Types of Large Model Problems” on page 14-3
“Summarize Model Hierarchy and Compatibility” on page 14-4
“Use the Default Parameter Values” on page 14-4
“Modify the Analysis Parameters” on page 14-6
“Use the Large Model Optimization” on page 14-6
“Stop the Analysis Before Completion” on page 14-6

Types of Large Model Problems

The Simulink Design Verifier software may encounter some of these problems when
analyzing a large model:

• Unsatisfiable objectives — The software proved there are no test cases that exercise
these test objectives, and did not generate any test cases.

• Undecided objectives — The software was not able to satisfy or falsify these
objectives.

• Objectives with errors — This problem usually occurs when a model component uses
nonlinear arithmetic, which can affect a test objective.

• Cannot complete the analysis in the time allotted — This problem may indicate an
area of your model where the software encountered problems, or you may need to
increase value of the Maximum analysis time parameter.

• Analysis hangs — If the number of objectives processed remains constant for a
considerable length of time, the software has likely encountered complexity between
the model and its objectives.

• Does not achieve a high percentage of model coverage — When you run the test cases
on the harness model, the percentage of model coverage is insufficient for your design.

The next few sections describe the initial steps to take when analyzing a large model.
Although these steps address test generation, you can use a similar approach when
detecting design errors or proving properties in a model.

14-3



14 Analyzing Large Models and Improving Performance

Summarize Model Hierarchy and Compatibility

You can use the Test Generation Advisor to summarize test generation compatibility,
condition and decision objectives, and dead logic for the model and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection.
You can use the results to better understand your model, particularly large models,
complex models, or models for which you are uncertain of their compatibility with
Simulink Design Verifier. For example, you can:

• Identify incompatibilities with test case generation.
• Identify complex components that might be time-consuming to analyze.
• Determine instances of dead logic.
• Get a summary of the component hierarchy.
• Get recommended test generation parameters.

You can access the Test Generation Advisor from the menu bar by clicking Analysis >
Design Verifier > Generate Tests > Advisor. For more information see “Use Test
Generation Advisor to Identify Analyzable Components” on page 7-21.

Use the Default Parameter Values

When you generate test cases, you should generally begin by analyzing the model using
the Simulink Design Verifier default parameter values:

1 Check to see if your model is compatible with Simulink Design Verifier, as described
in “Check Model Compatibility” on page 3-2.

2 Using the default parameter values, analyze the model. The following table lists the
default values for parameters in the Configuration Parameters dialog box that you
might change when analyzing large models.

Parameter Default Value Description

Maximum analysis
time (s)

300 (seconds) If the analysis does not finish within the
specified time, the analysis times out and
terminates.

Test suite
optimization

CombinedObjectives

(Nonlinear

extended)

Generates test cases that address more
than one test objective, as with the
CombinedObjectives option, but with

14-4



 Analyze a Large Model

Parameter Default Value Description

improved support for nonlinear arithmetic.
Each test case tends to include many time
steps.

Model coverage
objectives

Condition Decision Generates test cases that achieve condition
and decision coverage.

3 Review the following information in the Simulink Design Verifier log window while
the analysis runs:

• Number of objectives processed — How many objectives were processed? Did the
analysis hang after processing a certain number of objectives? The answers to
these questions might give you a clue about where a problem might lie.

• Number of objectives satisfied/Number of objectives falsified — Which objectives
were falsified?

• Time elapsed — Did the analysis time out, or did it finish within the specified
maximum analysis time?

4 When the analysis completes, you can highlight the results in the model and
individually review the analysis of each model object, as described in “Highlighted
Results on the Model” on page 13-2. You can also generate and review the Simulink
Design Verifier HTML report. This report contains links to the model elements for
satisfied and falsified objectives so you can see what portions of the model might
have problems. For more information, see “Simulink Design Verifier Reports” on
page 13-27.

5 For a test-generation analysis, if all the test objectives have been satisfied, run the
test cases on the harness model to determine model coverage.

If model coverage is enough for your design, you do not need to do anything
else. If the coverage is insufficient, take additional steps to improve the analysis
performance, as described in the following sections.

Note: A large percentage of falsified objectives and poor model coverage often indicate
that you need to change model parameter values to get complete coverage. This can occur
when you have tunable parameters in Constant blocks that are connected to enabled
subsystems or to the trigger inputs of Switch blocks. In these situations, configure
Simulink Design Verifier parameter support as described in the example “Specify
Parameter Constraint Values for Full Coverage” on page 5-10.

14-5



14 Analyzing Large Models and Improving Performance

Modify the Analysis Parameters

If the analysis satisfied most but not all of the objectives, try the following steps:

1 Increase the Maximum analysis time parameter. This gives the analysis more
time to satisfy all the objectives.

2 Set the Model coverage objectives parameter to Decision. Selecting this option
generates only test cases that achieve decision coverage. These test cases are a
subset of the MCDC option.

3 Rerun the analysis and review the report.

If the results are still not satisfactory, try the techniques described in the following
sections.

Use the Large Model Optimization

Set the Test suite optimization parameter to LargeModel or LargeModel
(Nonlinear Extended), and rerun the Simulink Design Verifier analysis.

The large model optimization strategies are designed for large, complex models. The
LargeModel (Nonlinear Extended) strategy includes improved support for
nonlinear arithmetic. These two strategies may or may not improve the results of your
analysis enough to fully test your design.

If you have outstanding objectives you want the software to generate, continue with the
following techniques.

Stop the Analysis Before Completion

Watch the Objectives processed value in the log window. If about 50 percent of the
Maximum analysis time parameter has elapsed and this value does not increase, the
model analysis may have trouble processing certain objectives. If the analysis does not
progress, take the following steps:

1 Click Stop in the log window.

A dialog box appears, informing you that the analysis was aborted and asking you if
you still want to produce results.

2 Click Yes to save the results of the analysis so far.

14-6



 Analyze a Large Model

The log window lists the following options, depending on which analysis mode you
ran:

• Highlight analysis results on model
• Generate detailed analysis report
• Create harness model
• Simulate tests and produce a model coverage report

3 Click Generate detailed analysis report.
4 In the HTML report, review the following sections to identify the model elements

that are causing problems:

• Objectives Undecided when the Analysis was Stopped
• Objectives Producing Errors

5 Review the model elements that have undecided objectives or objectives with
errors to see if any of the following problems are present. Consult the respective
documentation for specific techniques to improve the analysis.

Problem in your model More information

Floating-point inputs “Manage Model Data to Simplify the
Analysis” on page 14-9

Nonlinear operations • “Bottom-Up Approach to Model
Analysis” on page 14-15

• “Logical Operations” on page
14-23

Large state spaces “Models with Large Verification State
Space” on page 14-24

Large timers and time delays “Counters and Timers” on page 14-25

14-7



14 Analyzing Large Models and Improving Performance

Increase Allocated Memory for Analysis Report Generation

When you analyze a model with a large root-level input signal count, you may encounter
an insufficient memory error when Simulink Design Verifier is generating the report.

When this occurs, you need to increase the amount of memory the Sun™ Java® Virtual
Machine (JVM™) software can allocate. For steps on how to increase this memory, see
“Increase the MATLAB JVM Memory Allocation Limit” (MATLAB Report Generator).

14-8



 Manage Model Data to Simplify the Analysis

Manage Model Data to Simplify the Analysis

In this section...

“Simplify Data Types” on page 14-9
“Constrain Data” on page 14-9

Simplify Data Types

One way to simplify your model is to use for the designated signal data type a data type
requiring the least amount of space for the expected data. For example, do not use an
int data type for Boolean data, because only one bit is required for Boolean data.

In another example, suppose you have a Sum block with two inputs that are always
integers between –10 and 10. Set the Output data type parameter to int8, rather than
int32 or double.

To display the signal data types in the model window, select Display > Signals & Ports
> Port Data Types.

Constrain Data

Another effective technique for reducing complexity is to restrict the inputs to a
set of representative values or, ideally, a single constant value. This process, called
discretization, treats the input as if it were an enumeration. Discretization allows you
to handle nonlinear arithmetic from multiplication and division in the simplest way
possible.

The following model has a Product block feeding a Saturation block.

14-9



14 Analyzing Large Models and Improving Performance

The Simulink Design Verifier software generates errors when attempting to satisfy the
upper and lower limits of the Saturation block, because the software does not support
nonlinear arithmetic. To work around these errors, restrict one of the inputs to a set of
discrete values.

Identify discrete values that are required to satisfy your testing needs. For example, you
may have an input for model speed, and your design contains paths of execution that are
conditioned on speed above or below thresholds of 80, 150, 600, and 8000 RPM. For an
effective analysis, constrain speed values to be 50, 100, 200, 1000, 5000, or 10000 RPM so
that every threshold can be either active or inactive.

If you need to use more than two or three values, consider specifying the constrained
values using an expression like

num2cell(minval:increment:maxval)

Using the previous example model, restrict the second input (y) to be either 1, 2, 5, or 10
using the Test Condition block as shown in the following model. The Simulink Design
Verifier software produces test cases for all inputs.

14-10



 Manage Model Data to Simplify the Analysis

You can also constrain signals that are intermediate or output values of the model.
Constraining such signals makes it easier to work around multiplication or division
inside lower level subsystems that do not depend on model inputs.

Note: Discretization is best limited to a small number of inputs (less than 10). If your
model requires discretization of many inputs, try to achieve model coverage through
successive simulations, as described in “Partition Model Inputs for Incremental Test
Generation” on page 14-13.

Test Condition blocks do not need to be placed exactly on the inputs. In deciding where to
place the constraints in your model, consider the following guidelines:

• Favor constraints on the input values because the software can process inputs easier.
• If you need to place constraints on both the input and the output, for example, to

avoid nonlinear arithmetic, one of the constraints should be a range such as [minval
maxval]. The software first tests the values at both ends of the range and can return
a test case, even if the underlying calculations are nonlinear.

• Make sure that constraints at corresponding input and output points are not
contradictory. Do not constrain the output signals to values that are not achievable
because of the constraints on the input values.

• Avoid creating constraints that contradict the model. Such contradictions occur when
a constraint can never be satisfied because it contradicts some aspect of the model
or another constraint. Analyzing contradictory models can cause Simulink Design
Verifier to hang.

14-11



14 Analyzing Large Models and Improving Performance

The next model is a simple example of a contradictory model. The second input to the
Multiply block is the constant 1, but the Test Condition block constrains it to a value
of 2, 5, or 10. The analysis cannot achieve all the test objectives in this model.

• When you work with large models that have many multiplication and division
operations, you may find it easier to add constraints to all of the floating-point inputs
rather than to identify the precise set of inputs that require constraints.

14-12



 Partition Model Inputs for Incremental Test Generation

Partition Model Inputs for Incremental Test Generation

As described in “Constrain Data” on page 14-9, you can constrain the values of model
inputs using the Simulink Design Verifier Test Condition block.

Like other Simulink parameters, constraint values can be shared across several blocks
by referencing a common workspace variable; you can initialize constraint values using
MATLAB commands. If you have several inputs related to speed, such as desired speed,
measured speed, and average speed, you might choose to constrain all of them to the
same set of values.

As an advanced technique for experienced MATLAB programmers, you can use
parameterized constraints and successive runs of Simulink Design Verifier to implement
an incremental test-generation technique:

1 Partition model inputs so that some are held constant, some are constrained to sets
of constants using the Test Condition block, and some can have any value.

2 Generate test cases and run those test cases to collect model coverage.
3 Choose new values and partition the inputs with these new values.
4 Generate test cases for missing coverage using the sldvgencov function and the

current test coverage.

Note: To view an example of extending an existing test suite to achieve missing
model coverage, enter the following at the command prompt in the MATLAB
Command Window:

showdemo('sldvdemo_incremental_test_generation')

5 Repeat steps 3 and 4 until you have achieved the desired coverage.

Partition the model inputs that enable further simplification when an analysis
runs. Consider the following model, which has three mutually independent enabled
subsystems:

• Normal Mode
• Shutdown Mode
• Failure Mode

14-13



14 Analyzing Large Models and Improving Performance

You can incrementally generate test cases for each subsystem by constraining the first
input to a constant value before running an analysis. In this way, as you create test cases
for each subsystem, the software ignores the complexity of the other two subsystems.

14-14



 Bottom-Up Approach to Model Analysis

Bottom-Up Approach to Model Analysis

Simulink Design Verifier software works most effectively at analyzing large models
using a bottom-up approach. In this approach, the software analyzes smaller model
components first, which can be faster than using the Large model test suite
optimization.

The bottom-up approach offers several advantages:

• It allows you to solve the problems that slow down error detection, test generation, or
property proving in a controlled environment.

• Solving problems with small model components before analyzing the model as a whole
is more efficient, especially if you have unreachable components in your model that
you can only discover in the context of the model.

• You can iterate more quickly—find a problem and fix it, find another problem and fix
it, and so on.

• If one model component has a problem—for example, a component is unreachable in
simulation—that can prevent the software from generating tests for all the objectives
in a large model.

Try this workflow with your large model:

1 Use the Test Generation Advisor to identify analyzable model components and
generate tests for these components. For more information, see “Use Test Generation
Advisor to Identify Analyzable Components” on page 7-21.

2 Fix any problems by adding constraints or specifying block replacements.
3 After you analyze the smaller components, reapply the required constraints and

substitutions to the original model. Analyze the full model.

When you finish a bottom-up analysis, you have a top-level model that Simulink
Design Verifier can analyze quickly.

14-15



14 Analyzing Large Models and Improving Performance

Extract Subsystems for Analysis
In this section...

“Overview of Subsystem Extraction” on page 14-16
“sldvextract Function” on page 14-16
“Structure of the Extracted Model” on page 14-17
“Analyze Subsystems That Read from Global Data Storage” on page 14-17
“Analyze Function-Call Subsystems” on page 14-20

Overview of Subsystem Extraction

If you have a large model that slows down your analysis or has unreachable objectives,
you may want to analyze atomic subsystems or Stateflow atomic subcharts using
Simulink Design Verifier. This technique allows you to implement a bottom-up approach
to analyzing a large model, as described in “Bottom-Up Approach to Model Analysis” on
page 14-15.

When you analyze a subsystem or atomic subchart, the software:

• Extracts the subsystem or subchart into a new model.
• If required, adds blocks to the newly created model that replicate the execution

context of the subsystem or subchart within its parent model.
• Analyzes the extracted model and produces results.

Note: The Simulink Design Verifier software can only analyze atomic subsystems and
atomic subcharts.

For more information about analyzing subsystems, see “Generate Test Cases for a
Subsystem” on page 1-26.

For more information about analyzing atomic subcharts, see “Analyze a Stateflow Atomic
Subchart” on page 1-28.

sldvextract Function

The sldvextract function allows you to extract subsystems and atomic subcharts
for component verification. By extracting the subsystem or atomic subchart, you can

14-16



 Extract Subsystems for Analysis

verify the component in isolation from the rest of the system, allowing you to test the
component algorithm. For more information, see “What Is Component Verification?” on
page 10-2 and “Functions for Component Verification” on page 10-4.

Structure of the Extracted Model

When you analyze a subsystem or atomic subchart, Simulink Design Verifier creates
a new model that contains the subsystem or atomic subchart, and any input and
output ports that correspond to the ports connected to the original subsystem. The
software assigns the following properties to the ports in the new model, as determined by
compiling the original model:

• Data types
• Sample rates
• Signal dimensions

The software names the new model subsystem_name, where subsystem_name is the
name of the subsystem.

The next sections provide examples of how Simulink Design Verifier extracts and
analyzes subsystems.

Analyze Subsystems That Read from Global Data Storage

A data store is a repository to which you can write data, and from which you can read
data, without having to connect an input or output signal directly to the data store.

You create a data store using a Data Store Memory block or a Simulink.Signal object.
The Data Store Memory block or Simulink.Signal object represents the data store and
specifies its properties. Every data store must have a unique name.

When you analyze a subsystem that reads data from a data store that is accessed outside
the subsystem, the analysis:

• Adds a Data Store Memory block to the new model.
• Adds an input port that writes to the data store. Since the input writes to the data

store, the data can have any values (within the specified data type) for the purpose of
the Simulink Design Verifier analysis.

14-17



14 Analyzing Large Models and Improving Performance

If the data store specifies minimum and maximum values, those values are assigned
to the new input port.

The following example analyzes a subsystem in the sl_subsys_fcncall8 example
model:

1 Open the sl_subsys_fcncall8 example model:

sl_subsys_fcncall8

This model defines a data store A, from which the atomic subsystem Reader reads
data using a Data Store Read block.

2 Right-click the Reader subsystem and select Design Verifier > Generate Tests for
Subsystem.

The Simulink Design Verifier log window shows that the software extracts the
subsystem into a new model named Reader, analyzes the extracted model, and
offers you the choice of which results to produce.

3 Open the new Reader model that the software created in
<current_folder>\sldv_output\Reader.

14-18



 Extract Subsystems for Analysis

The new Inport block A writes into the data store, which is used by the subsystem
Reader in the new model.

14-19



14 Analyzing Large Models and Improving Performance

Analyze Function-Call Subsystems

A function-call subsystem is a triggered subsystem whose execution is determined by
logic internal to a C MEX S-function instead of by the value of a signal. Function-call
subsystems are always atomic.

Note: For more information, see “Function-Call Subsystems and S-Functions”
(Simulink).

When you analyze a model with a function-call subsystem, Simulink Design Verifier
creates a new model with an Inport block that mimics the trigger and a copy of the
subsystem. The software then analyzes the new model.

The following example analyzes a function-call subsystem in the sl_subsys_fcncall2
model:

1 Open the sl_subsys_fcncall2 example model:

sl_subsys_fcncall2

This model contains a Stateflow chart named Chart that triggers the function-call
subsystem f.

2 Right-click the f subsystem and select Design Verifier > Generate Tests for
Subsystem.

The software extracts the subsystem into a new model named f, analyzes the
extracted model, and produces results.

14-20



 Extract Subsystems for Analysis

3 Open the f model that the software created in <current_folder>\sldv_output
\f.

The Inport block and the new subsystem block mimic the trigger for the function-call
subsystem f in the new f model.

14-21



14 Analyzing Large Models and Improving Performance

14-22



 Logical Operations

Logical Operations

If you have a Simulink model with both logical and arithmetic operations, consider
analyzing only the logical operations.

The Simulink Design Verifier software does not support nonlinear arithmetic of floating-
point numbers, as occurs with multiplication or division, unless one of the multiply
operands or the divisor is a constant.

To simplify models that contain integers or floating-point numbers, the software maps
the model computations into expressions of Boolean variables. For example, the software
might represent an eight-bit number as a set of eight Boolean values, with one for
each digit. It might represent a bit-wise OR operation of two eight-bit integers as eight
separate logical OR operations.

Mapping problems of one data type into Boolean variables is complex, and this
complexity increases when the software performs such mapping. The software handles
models with predominantly logical signals more efficiently than it does those with large
integer or floating-point signals.

Note: Simulink Design Verifier software can handle floating-point inputs when their
values impact the design through linear inequalities such as x < y or a > 0.

In addition, input complexity can result from certain cast operations. For example,
casting a double to an int8 can introduce a nonlinearity in certain situations.

14-23



14 Analyzing Large Models and Improving Performance

Models with Large Verification State Space

Persistent design variables (variables that are assigned in one time step and used in a
later time step during simulation) affect the complexity of analysis in much the same
way as input complexity. You can use one or more of the following techniques to simplify
the complexity of the state space you want to search:

• Apply constraints to input signals that are delayed.
• Constrain the inputs to states that are contained within conditionally executed

subsystems.
• Limit the number of test case steps by setting the Maximum test case step

parameter to 20.
• Increase the sample time for part or all of the model. (This procedure is similar to

reducing timer thresholds, as described in “Counters and Timers” on page 14-25.)
A test case that you generate at a lower sample rate often has similarities to the test
case with a high sample rate that you need to achieve an objective.

• Use tight variable types where ever possible. For example, if a flag with values of 0 or
1 only is defined as a double, restrict the type to Boolean.

States that are computed from previous state values present a special challenge. For
example, if you want to restrict the integrator value in a PID controller, you can only use
a set of values that includes all reachable values from the initial value. Otherwise, the
input must be forced to 0. Neither of these limitations is practical and would probably
make the analysis less complete.

Alternatively, you can use existing simulation data to help satisfy your testing needs.
If you have existing test data, run it on your model and collect model coverage. For
an example of extending an existing test suite to achieve missing model coverage, see
Extend an Existing Test Suite.

14-24

../examples/extend-an-existing-test-suite.html


 Counters and Timers

Counters and Timers

Simulink Design Verifier analysis searches through sequences of states to find input
values that drive the analysis to reach a state that satisfies an objective. Each counter
value or timer step corresponds to a different state, so the presence of long timers or
counters can dramatically increase the size of the state representation. Since analysis
complexity depends on the size of the state representation, you must give special
consideration to counters and timers in your model to avoid overcomplicating Simulink
Design Verifier analysis.

Note: For the purposes of Simulink Design Verifier analysis, the term configuration
refers to a set of values for all the persistent information in your model.

The search process investigates all configurations that can be reached in a single timer
step before considering any of the configurations that can be reached in two timer steps.
Likewise, the search investigates all configurations that can be reached in two timer
steps before it considers any configuration that requires three or more timer steps, and
so on. The number of timer steps required to exhaust the counter directly affects the
number of states that the analysis needs to search. Models that contain time delays,
such as countdown timers, complicate the analysis by forcing the search to span a large
number of states.

You may see similar effects when systems use extensive averaging and filtering to delay
the response to a change in inputs. Any aspect of the design that delays the response
causes the test sequences to contain more timer steps, resulting in longer test cases that
are more difficult to identify.

Some basic techniques you can use to improve analysis performance in models with
counters or timers include the following:

• Choose very small values for time delays. A system with a logical error when a time
delay is set to 2000 steps usually demonstrates that error if the time delay is changed
to 2 steps. If your system has several delays, choose small but unique values for each
of them so that your delays are progressively satisfied.

• Make the initial values of counters and timers parameter values that Simulink
Design Verifier can modify. The software finds initial values that allow shorter test
cases to exceed thresholds. For more information, see “Parameter Constraint Values”
on page 5-2.

14-25



14 Analyzing Large Models and Improving Performance

• Choose higher frequency cutoffs for filters and fewer samples to average to minimize
filtering delays.

Some more advanced techniques you can use to improve analysis performance in models
with counters or timers include the following:

• Use sldvtimer to identify timer patterns that can be optimized for Simulink Design
Verifier test generation.

• Use an existing test case or set of test cases that exhausts the counter or timer, and
extend those test cases to create a full test suite. For more information, see Defining
and Extending Existing Test Cases.

14-26

../examples/defining-and-extending-existing-tests-cases.html
../examples/defining-and-extending-existing-tests-cases.html


 Prove Properties in Large Models

Prove Properties in Large Models

Property proving uses the same underlying techniques as design error detection and
test generation and suffers from the same performance limitations. However, unlike
design error detection or test generation, you often cannot simplify the problem without
compromising the validity of the results.

You can quickly prove simple proof objectives that are not affected by model dynamics.
However, a thorough proof requires that Simulink Design Verifier search through all
reachable configurations of your model—even the ones that are reached only after long
time delays. The computation time and memory required to search a model completely
often make an exhaustive proof impractical.

There are two techniques you can use to improve the performance of property proving in
a large model:

In this section...

“Find Property Violations While Designing Your Model” on page 14-27
“Combine Proving Properties and Finding Proof Violations” on page 14-28

Find Property Violations While Designing Your Model

Simulink Design Verifier software offers a strategy that quickly identifies property
violations in larger, more complicated models. While designing your model, analyze your
model using this strategy so that you can fix any property violations before finalizing
your design.

To identify property violations of a model, on the Design Verifier > Property Proving
pane of the Configuration Parameters dialog box, specify the value of the Strategy
parameter as FindViolation. When you use this strategy, the Maximum violation
steps parameter becomes active so that you can specify an upper bound for the number
of time steps in the search.

When analyze the model, the software searches only for property violations within the
specified number of time steps. By identifying and fixing the property violations first, you
improve the performance of a property-proving analysis that uses the Prove strategy.

If a violation is not detected, it is impossible to violate the property with any input
sequence having fewer time steps than the specified limit. However, you cannot prove

14-27



14 Analyzing Large Models and Improving Performance

that the property is true because there might be a counterexample within more time
steps than the specified limit.

Combine Proving Properties and Finding Proof Violations

Use the following technique for proving properties in large model. This technique
combines proving and searching for violations:

1 On the Design Verifier > Property Proving pane, set the Strategy parameter to
Prove.

2 On the Design Verifier pane, use a relatively short value for the Maximum
analysis time parameter, such as 5–10 minutes. If trivial counterexamples exist —
or if your properties do not depend on model dynamics—the analysis should complete
in that amount of time.

3 Change the Strategy parameter to FindViolation, and choose a small bound for
the Maximum violation steps parameter, such as 4, 5, or 6. If your properties
have simple counterexamples, the software should discover them.

4 If you do not find any violations with a small bound, increase the bound and look for
longer counterexamples.

a Increase the bound in several increments, and observe the processing time and
memory consumption. System resources might limit the length of violation that
can be searched.

b In addition, consider the dynamics of your model and the number of time steps
required to transition between an arbitrary pair of configurations. If you choose
too large a bound, the violation search can be more complex than the unbounded
proof.

5 If you can run violation searches with relatively large bounds, e.g., 30–50 time steps,
switch back to the Prove strategy, and use a longer time limit, such as several
hours.

14-28



15

Simulink Design Verifier Configuration
Parameters

• “Simulink Design Verifier Options” on page 15-2
• “Design Verifier Pane” on page 15-11
• “Design Verifier Pane: Block Replacements” on page 15-23
• “Design Verifier Pane: Parameters” on page 15-28
• “Design Verifier Pane: Test Generation” on page 15-40
• “Design Verifier Pane: Design Error Detection” on page 15-58
• “Design Verifier Pane: Property Proving” on page 15-64
• “Design Verifier Pane: Results” on page 15-70
• “Design Verifier Pane: Report” on page 15-84



15 Simulink Design Verifier Configuration Parameters

Simulink Design Verifier Options

In this section...

“Options in Configuration Parameters Dialog Box” on page 15-2
“Design Verification Options Objects” on page 15-2
“Command-Line Parameters for Design Verification Options” on page 15-2

Options in Configuration Parameters Dialog Box

You can set options for Simulink Design Verifier analysis in the Configuration
Parameters dialog box. To view the options, select Analysis > Design Verifier >
Options. The Design Verifier pane of the model configuration parameters opens.

By default, Simulink Design Verifier options do not appear in the Configuration
Parameters dialog box. In the Simulink Editor, when you select Analysis > Design
Verifier > Options, Simulink Design Verifier initially associates its default options with
that model. After you save the model, you can access Simulink Design Verifier options
directly from the Configuration Parameters dialog box or from the Model Explorer.

See “Configuration Parameters Dialog Box Overview” (Simulink) for more information
about working with this interface.

Design Verification Options Objects

You can use the sldvoptions function to specify Simulink Design Verifier options at
the command line.

To view in the MATLAB Command Window the design verification options associated
with a Simulink model, use the following syntax:

opts = sldvoptions('model_name');

get(opts)

Command-Line Parameters for Design Verification Options

Use the following parameters to configure the behavior of Simulink Design Verifier.
Use the get_param and set_param functions to retrieve and specify values for these
parameters programmatically.

15-2



 Simulink Design Verifier Options

For each parameter, the Location column indicates where you can set its value in
the Configuration Parameters dialog box. The Values column shows the type of value
required, the possible values (separated with a vertical line), and the default value
(enclosed in braces).

Parameter Location Values

DVAbsoluteTolerance Set by the Floating point
absolute tolerance
parameter on the Design
Verifier > Test Generation
pane.

double {'1.0e-05'}

DVAssertions Set by the Assertion blocks
parameter on the Design
Verifier > Property
Proving pane.

'EnableAll' | 'DisableAll'

| {'UseLocalSettings'}

DVAutomaticStubbing Set by the Automatic
stubbing of unsupported
blocks and functions
parameter on the Design
Verifier  pane.

{'on'} | 'off'

DVBlockReplacement Set by the Apply block
replacements parameter on
the Design Verifier > Block
Replacements pane.

'on' | {'off'}

DVBlockReplacement-

ModelFileName

Set by the File path of the
output model parameter on
the Design Verifier > Block
Replacements pane.

character array {'$ModelName
$_replacement'}

DVBlockReplacement-

RulesList

Set by the List of
block replacement
rules parameter on the
Design Verifier > Block
Replacements pane.

character array
{'<FactoryDefaultRules>'}

DVCoverageDataFile Set by the Coverage data
file parameter on the Design
Verifier > Test Generation
pane.

character array {''}

15-3



15 Simulink Design Verifier Configuration Parameters

Parameter Location Values

DVCovFilter Set by the Ignore objectives
based on filter parameter on
the Design Verifier > Test
Generation pane.

'on' | {'off'}

DVCovFilterFileName Set by the Coverage filter
file parameter on the Design
Verifier > Test Generation
pane.

character array {''}

DVDataFileName Set by the Data file name
parameter on the Design
Verifier > Results pane.

character array {'$ModelName
$_sldvdata'}

DVDesignMinMaxCheck Set by the Check specified
intermediate minimum and
maximum values parameter
on the Design Verifier >
Design Error Detection
pane.

'on' | {'off'}

DVDesignMinMax-

Constraints

Set by the Use specified
input minimum and
maximum values parameter
on the Design Verifier pane.

{'on'} | 'off'

DVDetectDeadLogic Set by Dead logic on the
Design Verifier > Design
Error Detection pane.

'on' | {'off'}

DVDetectDivisionByZero Set by the Division by zero
parameter on the Design
Verifier > Design Error
Detection pane.

{'on'} | 'off'

DVDetectIntegerOverflow Set by the Integer overflow
parameter on the Design
Verifier > Design Error
Detection pane.

{'on'} | 'off'

15-4



 Simulink Design Verifier Options

Parameter Location Values

DVDetectOutOfBounds Set by the Out of bound
array access parameter
on the Design Verifier >
Design Error Detection
pane.

'on' | {'off'}

DVDisplayReport Set by the Display report
parameter on the Design
Verifier > Report pane.

{'on'} | 'off'

DVDisplayResultsOnModel Set by the Display results of
the analysis on the model
parameter on the Design
Verifier > Results pane.

'on' | {'off'}

DVDisplayUnsatisfiable-

Objectives

Set by the Display
unsatisfiable test
objectives parameter on the
Design Verifier pane.

'on' | {'off'}

DVExtendExistingTests Set by the Extend existing
test cases parameter on
the Design Verifier > Test
Generation pane.

'on' | {'off'}

DVExistingTestFile Set by the Data file
parameter on the Design
Verifier > Test Generation
pane.

character array {''}

DVHarnessModelFileName Set by the Harness model
file name parameter on the
Design Verifier > Results
pane.

character array {'$ModelName
$_harness'}

DVIgnoreCovSatisfied Set by the Ignore objectives
satisfied in existing
coverage data parameter on
the Design Verifier > Test
Generation pane.

'on' | {'off'}

15-5



15 Simulink Design Verifier Configuration Parameters

Parameter Location Values

DVIgnoreExistTest-

Satisfied

Set by the Ignore objectives
satisfied by existing test
cases parameter on the
Design Verifier > Test
Generation pane.

{on'}| 'off'

DVIncludeRelational-

Boundary

Set by the Include relational
boundary objectives
parameter on the Design
Verifier > Test Generation
pane.

{'on'} | 'off'

DVMakeOutputFilesUnique Set by the Make output file
names unique by adding
a suffix check box on the
Design Verifier pane.

{'on'} | 'off'

DVMaxProcessTime Set by the Maximum
analysis time parameter on
the Design Verifier pane.

double {'300'}

DVMaxTestCaseSteps Set by the Maximum test
case steps parameter on
the Design Verifier > Test
Generation pane.

int32 {'10000'}

DVMaxViolationSteps Set by the Maximum
violation steps parameter
on the Design Verifier >
Property Proving pane.

int32 {'20'}

DVMode Set by the Mode parameter on
the Design Verifier pane.

{'TestGeneration'} |

'DesignErrorDetection' |

'PropertyProving'

DVModelCoverage-

Objectives

Set by the Model coverage
objectives parameter on
the Design Verifier > Test
Generation pane.

'None' | 'Decision' |

{'ConditionDecision'} |

'MCDC'

15-6



 Simulink Design Verifier Options

Parameter Location Values

DVModelReferenceHarness Set by the Reference
input model in generated
harness parameter on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

DVOutputDir Set by Output folder on the
Design Verifier pane.

character array {'sldv_output/
$ModelName$'}

DVParameterConstraints Set by Constraint column
in Parameter Table on
the Design Verifier >
Parameters pane.

double array {[]}

DVParameterNames Set by Name column
in Parameter Table on
the Design Verifier >
Parameters pane.

double array {[]}

DVParameterUseIn-

Analysis

Set by Use column in
Parameter Table on
the Design Verifier >
Parameters pane.

cell array {[]}

DVParameters Set by Enable parameter
configuration on the Design
Verifier > Parameters pane.

'on' | {'off'}

DVParametersConfigFile-

Name

Set by Parameter
configuration file on
the Design Verifier >
Parameters pane.

This parameter
is disabled when
DVParametersUseConfig is
set to 'on'.

character array
{'sldv_params_template.m'}

15-7



15 Simulink Design Verifier Configuration Parameters

Parameter Location Values

DVParametersUseConfig Set by Use parameter table
on the Design Verifier >
Parameters pane.

When set to 'on', this
parameter disables
DVParametersConfig-

FileName.

'on' | {'off'}

DVProofAssumptions Set by the Proof
assumptions parameter
on the Design Verifier >
Property Proving pane.

'EnableAll' | 'DisableAll'

| {'UseLocalSettings'}

DVProvingStrategy Set by the Strategy
parameter on the Design
Verifier > Property
Proving pane.

'FindViolation'

| {'Prove'} |

'ProveWithViolationDetection'

DVRandomizeNoEffectData Set by the Randomize data
that do not affect the
outcome parameter on the
Design Verifier > Results
pane.

'on' | {'off'}

DVRelativeTolerance Set by the Floating
point relative tolerance
parameter on the Design
Verifier > Test Generation
pane.

double {'0.01'}

DVReportFileName Set by the Report file name
parameter on the Design
Verifier > Report pane.

character array {'$ModelName
$_report'}

DVReportIncludeGraphics Set by the Include screen
shots of properties
parameter on the Design
Verifier > Report pane.

'on' | {'off'}

15-8



 Simulink Design Verifier Options

Parameter Location Values

DVReportPDFFormat Set by the Generate
additional report in PDF
format parameter on the
Design Verifier > Report
pane.

'on' | {off'}

DVSaveDataFile Set by the Save test data to
file parameter on the Design
Verifier > Results pane.

{'on'} | 'off'

DVSaveExpectedOutput Set by the Include expected
output values parameter
on the Design Verifier >
Results pane.

'on' | {'off'}

DVSaveHarnessModel Set by the Generate
separate harness model
after analysis parameter
on the Design Verifier >
Results pane.

'on' | {off'}

DVSaveReport Set by the Generate report
of the results parameter
on the Design Verifier >
Report pane.

'on' | {off'}

DVSFcnSupport Set by the Support S-
Functions in the analysis
parameter on the Design
Verifier pane.

{'on'} | off'

DVSlTestHarnessName Set by the Test Harness
Name parameter on the
Design Verifier > Results
pane.

character array {'$ModelName
$_sldvharness'}

DVSlTestFileName Set by the Test File Name
parameter on the Design
Verifier > Results pane.

character array {'$ModelName
$_test'}

15-9



15 Simulink Design Verifier Configuration Parameters

Parameter Location Values

DVTestConditions Set by the Test conditions
parameter on the Design
Verifier > Test Generation
pane.

'EnableAll' | 'DisableAll'

| {'UseLocalSettings'}

DVTestObjectives Set by the Test objectives
parameter on the Design
Verifier > Test Generation
pane.

'EnableAll' | 'DisableAll'

| {'UseLocalSettings'}

DVTestSuiteOptimization Set by the Test suite
optimization parameter on
the Design Verifier > Test
Generation pane.

{'CombinedObjectives'}

| 'IndividualObjectives'

| 'LargeModel' |
'LongTestcases' |
'CombinedObjectives

(Nonlinear Extended)' |
'LargeModel (Nonlinear

Extended)'

15-10



 Design Verifier Pane

Design Verifier Pane

In this section...

“Design Verifier Pane Overview” on page 15-12
“Mode” on page 15-12
“Maximum analysis time” on page 15-14
“Display unsatisfiable test objectives” on page 15-15
“Automatic stubbing of unsupported blocks and functions” on page 15-16
“Support S-Functions in the analysis” on page 15-17
“Use specified input minimum and maximum values” on page 15-18
“Output folder” on page 15-19
“Make output file names unique by adding a suffix” on page 15-20
“Check Model Compatibility” on page 15-21
“Generate Tests/Detect Errors/Prove Properties” on page 15-22

15-11



15 Simulink Design Verifier Configuration Parameters

Design Verifier Pane Overview

Specify analysis options and configure Simulink Design Verifier output.

Mode

Specify the analysis mode for Simulink Design Verifier.

Settings

Default: Test generation

Design error detection

Detects integer and fixed-point overflow errors and division-by-zero errors in a model
Test generation

Generates test cases for a model.
Property proving

Proves properties of a model.

Tip

The Simulink Design Verifier software specifies the value of this option automatically
when you select one of the following menu options:

• Analysis > Design Verifier > Generate Tests
• Analysis > Design Verifier > Detect Design Errors
• Analysis > Design Verifier > Prove Properties

Dependency

Selecting Test generation enables the Display unsatisfiable test objectives
parameter.

When you set the Mode parameter, the button below Check Model Compatibility
changes as follows:

• Mode: Test generation, button reads: Generate Tests
• Mode: Design error detection, button reads: Detect Errors
• Mode: Property proving, button reads: Prove Properties

15-12



 Design Verifier Pane

Command-Line Information
Parameter: DVMode
Type: character array
Value: 'TestGeneration' | 'DesignErrorDetection' | 'PropertyProving'
Default: 'TestGeneration'

See Also

• “Basic Workflow for Simulink Design Verifier” on page 1-31
• “What Is Design Error Detection?” on page 6-2
• “What Is Test Case Generation?” on page 7-2
• “What Is Property Proving?” on page 12-2

15-13



15 Simulink Design Verifier Configuration Parameters

Maximum analysis time

Specify the maximum time (in seconds) that Simulink Design Verifier spends analyzing a
model.

Settings

Default: 300

The value that you enter represents the maximum number of seconds Simulink Design
Verifier analyzes your model.

Command-Line Information
Parameter: DVMaxProcessTime
Type: double
Value: any valid value
Default: 300

15-14



 Design Verifier Pane

Display unsatisfiable test objectives

Specify whether to display warnings if the analysis detects unsatisfiable test objectives.

Settings

Default: Off

On
Displays a warning in the Simulation Diagnostics Viewer when Simulink Design
Verifier is unable to satisfy a test objective.

Off
Does not display a warning when Simulink Design Verifier is unable to satisfy a test
objective.

Tip: If you select Display unsatisfiable test objectives, on the Test Generation
pane, set Test suite optimization to CombinedObjectives. If you perform test-
generation analysis on your model and the returned test objectives do not have outcomes,
set Test suite optimization to IndividualObjectives and reanalyze the model. The
IndividualObjectives strategy analyzes each objective independently and identifies
unsatisfiable objectives.

Command-Line Information
Parameter: DVDisplayUnsatisfiableObjectives
Type: character array
Value: 'on' | 'off'
Default: 'off'

15-15



15 Simulink Design Verifier Configuration Parameters

Automatic stubbing of unsupported blocks and functions

Specify whether to ignore unsupported blocks and functions during analysis.

Settings

Default: On

 On
Ignores unsupported blocks and functions and proceeds with the analysis.

 Off
Displays a warning when Simulink Design Verifier encounters an unsupported block
or function and asks if you want to continue the analysis.

Command-Line Information
Parameter: DVAutomaticStubbing
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Handle Incompatibilities with Automatic Stubbing” on page 2-8

15-16



 Design Verifier Pane

Support S-Functions in the analysis

Specify whether to enable support for S-Functions that have been compiled to be
compatible with Simulink Design Verifier.

Settings

Default: On

 On
Enables support for S-Functions that have been compiled to be compatible with
Simulink Design Verifier.

 Off
Simulink Design Verifier automatically stubs S-Functions during analysis.

Command-Line Information
Parameter: DVSFcnSupport
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Support Limitations for S-Functions” on page 3-36

Configuring S-Function for Test Case Generation

“Handle Incompatibilities with Automatic Stubbing” on page 2-8

15-17



15 Simulink Design Verifier Configuration Parameters

Use specified input minimum and maximum values

Specify whether to generate test cases that consider specified minimum and maximum
values as constraints for all input signals in your model.

Settings

Default: On

 On
Considers specified minimum and maximum values as constraints for all input
signals.

 Off
Ignores any specified minimum and maximum values.

Command-Line Information
Parameter: DVDesignMinMaxConstraints
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Minimum and Maximum Input Constraints” on page 11-2

15-18



 Design Verifier Pane

Output folder

Specify a path name to which Simulink Design Verifier writes its output.

Settings

Default: sldv_output/$ModelName$

• Enter a path that is either absolute or relative to the current folder.
• $ModelName$ is a token that represents the model name.

Tip

You can use the following parameters to customize the names and locations of Simulink
Design Verifier output:

• On the Results pane:

• Data file name
• Harness model file name
• Simulink Test options > Test File name

• On the Report pane:

• Report file name
• File path of the output model

• On the Block Replacements pane:

• File path of the output model

Command-Line Information
Parameter: DVOutputDir
Type: character array
Value: any valid path
Default: 'sldv_output/$ModelName$'

See Also

“Results Interpretation and Use”

15-19



15 Simulink Design Verifier Configuration Parameters

Make output file names unique by adding a suffix

Specify whether Simulink Design Verifier makes its output file names unique by
appending a numeric suffix.

Settings

Default: On

 On
Appends an incremental numeric suffix to Simulink Design Verifier output file
names. Selecting this option prevents the software from overwriting existing files
that have the same name.

 Off
Does not append a suffix to Simulink Design Verifier output file names. In this case,
the software might overwrite existing files that have the same name.

Command-Line Information
Parameter: DVMakeOutputFilesUnique
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Results Interpretation and Use”

15-20



 Design Verifier Pane

Check Model Compatibility

Run a check to assess your model for compatibility with Simulink Design Verifier. For
more information, see “Simulink Design Verifier Checks”.

15-21



15 Simulink Design Verifier Configuration Parameters

Generate Tests/Detect Errors/Prove Properties

When you set the Mode parameter, this button changes as follows:

• Mode: Test generation, button reads: Generate Tests

For more information, see “What Is Test Case Generation?” on page 7-2.
• Mode: Design error detection, button reads: Detect Errors

For more information, see “What Is Design Error Detection?” on page 6-2.
• Mode: Property proving, button reads: Prove Properties

For more information, see “What Is Property Proving?” on page 12-2.

15-22



 Design Verifier Pane: Block Replacements

Design Verifier Pane: Block Replacements

In this section...

“Block Replacements Pane Overview” on page 15-24
“Apply block replacements” on page 15-25
“List of block replacement rules” on page 15-26
“File path of the output model” on page 15-27

15-23



15 Simulink Design Verifier Configuration Parameters

Block Replacements Pane Overview

Specify options that control how Simulink Design Verifier preprocesses the models it
analyzes.

See Also

“Block Replacement”

15-24



 Design Verifier Pane: Block Replacements

Apply block replacements

Specify whether Simulink Design Verifier replaces blocks in a model before its analysis.

Settings

Default: Off

 On
Replaces blocks in a model before Simulink Design Verifier analyzes it.

Off
Does not replace blocks in a model before Simulink Design Verifier analyzes it.

Dependencies

This parameter enables List of block replacement rules and File path of the output
model.

Command-Line Information
Parameter: DVBlockReplacement
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Block Replacement”

15-25



15 Simulink Design Verifier Configuration Parameters

List of block replacement rules

Specify a list of block replacement rules that Simulink Design Verifier executes before its
analysis.

Settings

Default: <FactoryDefaultRules>

• Specify block replacement rules as a list delimited by spaces, commas, or carriage
returns.

• The Simulink Design Verifier software processes block replacement rules in the order
that you list them.

• If you specify the default value, Simulink Design Verifier uses its factory default block
replacement rules.

Dependency

This parameter is enabled when you select Apply block replacements.

Command-Line Information
Parameter: DVBlockReplacementRulesList
Type: character array
Value: any valid rules
Default: '<FactoryDefaultRules>'

See Also

“Block Replacement”

15-26



 Design Verifier Pane: Block Replacements

File path of the output model

Specify a folder and file name for the model that results after applying block replacement
rules.

Settings

Default: $ModelName$_replacement

• Optionally, enter a path that is either absolute or relative to the path name specified
in Output folder.

• Enter a file name for the model that results after applying block replacement rules.
• $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled when you select Apply block replacements.

Command-Line Information
Parameter: DVBlockReplacementModelFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_replacement'

See Also

“Block Replacement”

15-27



15 Simulink Design Verifier Configuration Parameters

Design Verifier Pane: Parameters

15-28



 Design Verifier Pane: Parameters

In this section...

“Parameters Pane Overview” on page 15-30
“Enable parameter configuration” on page 15-30
“Use parameter table” on page 15-31
“Parameter configuration file” on page 15-32
“Browse...” on page 15-33
“Edit...” on page 15-33
“Enable” on page 15-33
“Disable” on page 15-33
“Clear” on page 15-34
“Highlight in Model” on page 15-34
“Use” on page 15-34
“Name” on page 15-35
“Constraint” on page 15-35
“Value” on page 15-36
“Min” on page 15-37
“Max” on page 15-37
“Model Element” on page 15-38
“Find in Model” on page 15-38
“Add from File...” on page 15-38
“Export to File...” on page 15-39

15-29



15 Simulink Design Verifier Configuration Parameters

Parameters Pane Overview

Specify options that control how Simulink Design Verifier uses parameter configurations
when analyzing models.

Enable parameter configuration

Specify whether the software uses parameter configurations when analyzing a model.
Select this option to treat parameters as variables in Simulink Design Verifier analysis.

To specify value ranges or constraints for parameters:

• Use a parameter configuration file. Enter the file name in Parameter
configuration file.

• Use the Parameter Table. Select Use parameter table.

Settings

Default: Off

 On
The Simulink Design Verifier software uses specified parameter configurations when
analyzing a model.

 Off
The Simulink Design Verifier software does not use parameter configurations when
analyzing a model.

Tips

When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with
a Data file and apply parameter configurations with a Parameter configuration file
or the Parameter Table, when you attempt to perform Simulink Design Verifier analysis,
the software reports that your model is incompatible. This occurs because the existing
test cases do not include corresponding parameter values.

Dependency

This parameter enables Parameter configuration file.

15-30



 Design Verifier Pane: Parameters

Command-Line Information
Parameter: DVParameters
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Define Constraint Values for Parameters” on page 5-4

Use parameter table

Enable the Parameter Table to specify value ranges or constraints for parameters.

Settings

Default: Off

 On
Use the Parameter Table to define parameters as variables for Simulink Design
Verifier analysis.

 Off
Do not use the Parameter Table to define parameters as variables for Simulink
Design Verifier analysis.

Tips

When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with
a Data file and apply parameter configurations with a Parameter configuration file
or the Parameter Table, when you attempt to perform Simulink Design Verifier analysis,
the software reports that your model is incompatible. This occurs because the existing
test cases do not include corresponding parameter values.

Dependency

When Enable parameter configuration is also selected, this parameter enables the
Parameter Table.

15-31



15 Simulink Design Verifier Configuration Parameters

This parameter disables Parameter configuration file.

Command-Line Information
Parameter: DVParametersUseConfig
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Define Constraint Values for Parameters” on page 5-4

Parameter configuration file

Specify a MATLAB function that defines parameter configurations for a model.

Settings

Default: sldv_params_template.m

• The default file, sldv_params_template.m, is a template that you can edit and
save. The comments in the template explain the syntax you use to specify parameter
configurations.

• Click the Browse button to select an existing MATLAB file.
• Click the Edit button to open the specified MATLAB file in an editor.

Tips

When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >
Design Verifier > Options, if you specify your model to extend existing test cases with
a Data file and apply parameter configurations with a Parameter configuration file
or the Parameter Table, when you attempt to perform Simulink Design Verifier analysis,
the software reports that your model is incompatible. This occurs because the existing
test cases do not include corresponding parameter values.

Dependency

This parameter is enabled by Enable parameter configuration. This parameter is
disabled by Use parameter table.

15-32



 Design Verifier Pane: Parameters

Command-Line Information
Parameter: DVParametersConfigFileName
Type: character array
Value: any valid MATLAB file
Default: 'sldv_params_template.m'

See Also

“Define Constraint Values for Parameters” on page 5-4

Browse...

Browse to the parameter configuration file.

Dependency

This button is enabled by Enable parameter configuration. This button is disabled by
Use parameter table.

Edit...

Edit the current parameter configuration file.

Dependency

This button is enabled by Enable parameter configuration. This button is disabled by
Use parameter table.

Enable

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Disable

15-33



15 Simulink Design Verifier Configuration Parameters

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Clear

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Highlight in Model

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Use

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Use column specifies whether to use this rows’s named parameter and specified
constraint in the current parameter configuration.

Settings

Default: Off

 On
Use this parameter and its specified constraint in the current parameter
configuration.

 Off

15-34



 Design Verifier Pane: Parameters

Do not use this parameter and its specified constraint in the current parameter
configuration.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-4

Name

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Name column displays the name of the parameter.

Settings

Default: empty

Tips

To load the model parameters into the Parameter Table, at the bottom of the table, click
Find in Model. When possible, the software automatically generates constraint values
for each parameter.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-4

Constraint

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

15-35



15 Simulink Design Verifier Configuration Parameters

The Constraint column contains the specified value range for the parameter.

Settings

Default: empty

Tips

To autogenerate parameter constraints, at the bottom of the Parameter Table, click Find
in Model.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-4

Value

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Value column contains the value of the parameter in the base workspace. If the
parameter is defined in a Simulink data dictionary that is linked to the model, the Value
column contains the value of the parameter in the data dictionary.

Settings

Default: empty

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-4

15-36



 Design Verifier Pane: Parameters

Min

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

For parameters of type Simulink.Parameter with a specified minimum value, the Min
column contains the specified minimum value for the parameter.

Settings

Default: empty

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

• “Define Constraint Values for Parameters” on page 5-4
• Simulink.Parameter

Max

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

For parameters of type Simulink.Parameter with a specified maximum value, the
Max column contains the specified maximum value for the parameter.

Settings

Default: empty

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

• “Define Constraint Values for Parameters” on page 5-4

15-37



15 Simulink Design Verifier Configuration Parameters

• Simulink.Parameter

Model Element

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Model Element column displays the path to the model elements where the
parameter is used.

Settings

Default: empty

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-4

Find in Model

The Parameter Table searches your model for parameters that can be configured and
loads them in the table.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Add from File...

Adds parameters to the Parameter Table from a list stored in a file.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

15-38



 Design Verifier Pane: Parameters

Export to File...

Exports the current parameters in the Parameter Table to a file.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

15-39



15 Simulink Design Verifier Configuration Parameters

Design Verifier Pane: Test Generation

In this section...

“Test Generation Pane Overview” on page 15-42
“Model coverage objectives” on page 15-43
“Test conditions” on page 15-44
“Test objectives” on page 15-45
“Maximum test case steps” on page 15-46

15-40



 Design Verifier Pane: Test Generation

In this section...

“Test suite optimization” on page 15-47
“Extend existing test cases” on page 15-48
“Data file” on page 15-49
“Browse...” on page 15-50
“Ignore objectives satisfied by existing test cases” on page 15-50
“Ignore objectives satisfied in existing coverage data” on page 15-51
“Coverage data file” on page 15-52
“Browse...” on page 15-52
“Ignore objectives based on filter” on page 15-52
“Coverage filter file” on page 15-53
“Browse...” on page 15-54
“Include relational boundary objectives” on page 15-54
“Floating point absolute tolerance” on page 15-55
“Floating point relative tolerance” on page 15-56

15-41



15 Simulink Design Verifier Configuration Parameters

Test Generation Pane Overview

Specify options that control how Simulink Design Verifier generates tests for the models
it analyzes.

See Also

“Workflow for Test Case Generation” on page 7-4

15-42



 Design Verifier Pane: Test Generation

Model coverage objectives

Specify the type of model coverage that Simulink Design Verifier attempts to achieve.

Settings

Default: Condition Decision

None

Generates test cases that achieve only the custom objectives that you specified in
your model using, for example, Test Objective blocks.

Decision

Generates test cases that achieve decision coverage. For more information, see
“Decision” on page 7-27.

Condition Decision

Generates test cases that achieve condition and decision coverage. For more
information, see “Condition” on page 7-27.

MCDC

Generates test cases that achieve modified condition/decision coverage (MCDC). For
more information, see “MCDC” on page 7-28.

When you set Model coverage objectives to MCDC, Simulink Design Verifier
automatically enables every coverage objective for decision coverage and condition
coverage as well. Similarly, enabling coverage for condition coverage causes every
decision and condition coverage outcome to be enabled.

Command-Line Information
Parameter: DVModelCoverageObjectives
Type: character array
Value: 'None' | 'Decision' | 'ConditionDecision' | 'MCDC'
Default: 'ConditionDecision'

See Also

“Workflow for Test Case Generation” on page 7-4

15-43



15 Simulink Design Verifier Configuration Parameters

Test conditions

Specify whether Test Condition blocks in your model are enabled or disabled.

Settings

Default: Use local settings

Use local settings

Enables or disables Test Condition blocks based on the value of the Enable
parameter of each block. If a block's Enable parameter is selected, the block is
enabled; otherwise, the block is disabled.

Enable all

Enables all Test Condition blocks in the model regardless of the settings of their
Enable parameters.

Disable all

Disables all Test Condition blocks in the model regardless of the settings of their
Enable parameters.

Command-Line Information
Parameter: DVTestConditions
Type: character array
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Test Condition
• “Workflow for Test Case Generation” on page 7-4

15-44



 Design Verifier Pane: Test Generation

Test objectives

Specify whether Test Objective blocks in your model are enabled or disabled.

Settings

Default: Use local settings

Use local settings

Enables or disables Test Objective blocks based on the value of the Enable
parameter of each block. If a block's Enable parameter is selected, the block is
enabled; otherwise, the block is disabled.

Enable all

Enables all Test Objective blocks in the model regardless of the settings of their
Enable parameters.

Disable all

Disables all Test Objective blocks in the model regardless of the settings of their
Enable parameters.

Command-Line Information
Parameter: DVTestObjectives
Type: character array
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Test Objective
• “Workflow for Test Case Generation” on page 7-4

15-45



15 Simulink Design Verifier Configuration Parameters

Maximum test case steps

Specify the maximum number of simulation steps Simulink Design Verifier takes when
attempting to satisfy a test objective.

The analysis uses the Maximum test case steps parameter during certain parts of
the test-generation analysis to bound the number of steps that test generation uses.
When you set a small value for this parameter, the parts of the analysis that are bounded
complete in less time. When you set a larger value, the bounded parts of the analysis
take longer, but it is possible for these parts of the analysis to generate longer test cases.

To achieve the best performance, set the Maximum test case steps parameter to a
value just large enough to bound the longest required test case, even if the test cases that
are ultimately generated are longer than this value.

When you also specify LongTestcases for the Test suite optimization parameter, the
analysis uses successive passes of test generation to extend a potential test case so that
it satisfies more objectives. When this happens, the analysis applies the Maximum test
case steps parameter to each individual iteration of test generation.

Settings

Default: 10000

You can specify a value that represents the maximum number of simulation steps
Simulink Design Verifier takes when attempting to satisfy a test objective.

Command-Line Information
Parameter: DVMaxTestCaseSteps
Type: int32
Value: any valid value
Default: 10000

See Also

“Workflow for Test Case Generation” on page 7-4

15-46



 Design Verifier Pane: Test Generation

Test suite optimization

Specify the optimization strategy to use when generating test cases.

Settings

Default: CombinedObjectives (Nonlinear Extended)

CombinedObjectives (Nonlinear Extended)

Analyzes the model using a variation of the CombinedObjectives optimization.
This optimization includes improved support for nonlinear arithmetic.

LargeModel (Nonlinear Extended)

Analyzes the model using a variation of the LargeModel optimization. This
optimization includes improved support for nonlinear arithmetic.

IndividualObjectives

Maximizes the number of test cases in a suite by generating cases that each address
only one test objective. Each test case tends to be short, i.e., it includes only a few
time steps.

LongTestcases

Combines test cases to create a smaller number of test cases. This strategy generates
fewer, but longer, test cases that each satisfy multiple test objectives and creates a
more efficient analysis and easier-to-review results.

CombinedObjectives

Minimizes the number of test cases in a suite by generating cases that address more
than one test objective. Each test case tends to be long, i.e., it includes many time
steps.

LargeModel

Minimizes the number of test cases in a suite by generating cases that address
more than one test objective. This strategy is tailored for large, complex models;
consequently, it tends to use all the time that the Maximum analysis time option
allots.

Tip

If you want to identify unsatisfiable objectives, set this option to
IndividualObjectives. The IndividualObjectives strategy analyzes each
objective independently, so it has a better chance of identifying unsatisfiable objectives.

15-47



15 Simulink Design Verifier Configuration Parameters

If you have many test objectives or you want to create a smaller number of test cases,
select LongTestcases for a more efficient analysis and an easy-to-review report.

If your model has both of the following characteristics:

• Nonlinearities, such as those that result from multiplying or dividing the model’s
input signals

• Numerous test objectives, such as those that result when using blocks that receive
model coverage

set this option to LargeModel (Nonlinear Extended). The LargeModel and
LargeModel (Nonlinear Extended) strategies perform an analysis that is tailored
to large, complex models. However, these strategies tend to use all the time that the
Maximum analysis time option allots.

Command-Line Information
Parameter: DVTestSuiteOptimization
Type: character array
Value: 'CombinedObjectives (Nonlinear Extended)' | 'LargeModel
(Nonlinear Extended)' | 'IndividualObjectives' | 'LongTestcases'
|'CombinedObjectives' | 'LargeModel' |
Default: 'CombinedObjectives (Nonlinear Extended)'

See Also

“Workflow for Test Case Generation” on page 7-4

Extend existing test cases

Extend the Simulink Design Verifier analysis by importing test cases logged from a
harness model or a closed-loop simulation model.

Settings

Default: Off

 On
Extends the analysis by using the logged test cases specified in Data file.

 Off
Does not extend the analysis.

15-48



 Design Verifier Pane: Test Generation

Tips

When Simulink Design Verifier is configured to apply parameters specified in
Parameter configuration file, you cannot use the Extend existing test cases
option. If you specify your model to extend existing test cases with a Data file and apply
parameter configurations with a Parameter configuration file, when you attempt
to perform Simulink Design Verifier analysis, the software reports that your model is
incompatible. This occurs because the existing test cases do not include corresponding
parameter values.

Dependency

This parameter enables Data file and Ignore objectives satisfied by existing test
cases.

Command-Line Information
Parameter: DVExtendExistingTests
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “When to Extend Existing Test Cases” on page 8-2
• “Common Workflow for Extending Existing Test Cases” on page 8-4

Data file

Specify a folder and file name for the MAT-file that contains the logged test case data.

Settings

Default: ''

• Specify a folder and file name for the MAT-file that contains the logged test case data
in an sldvData object.

• Click the Browse button to navigate to and select an existing file.

Tips

When you configure Simulink Design Verifier to treat parameters as variables in its
analysis, you cannot also use the analysis to extend existing test cases. In Analysis >

15-49



15 Simulink Design Verifier Configuration Parameters

Design Verifier > Options, if you specify your model to extend existing test cases with
a Data file and apply parameter configurations with a Parameter configuration file
or the Parameter Table, when you attempt to perform Simulink Design Verifier analysis,
the software reports that your model is incompatible. This occurs because the existing
test cases do not include corresponding parameter values.

Command-Line Information
Parameter: DVExistingTestFile
Type: character array
Value: any valid path and file name
Default: ''

See Also

“Simulink Design Verifier Data Files” on page 13-9

Browse...

Browse to the MAT-file that contains the logged test case data.

Dependency

This button is enabled by Extend existing test cases.

Ignore objectives satisfied by existing test cases

Ignore the coverage objectives satisfied by the logged test cases in Data file.

Settings

Default: On

 On
Generates results, but excludes coverage objectives satisfied by logged test cases in
Data file from the analysis.

 Off
Generates results for the full test suite, including coverage objectives satisfied by the
logged test cases in Data file.

15-50



 Design Verifier Pane: Test Generation

Command-Line Information
Parameter: DVIgnoreExistTestSatisfied
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

• “Extend Test Cases for Closed-Loop System” on page 8-12
• “Simulink Design Verifier Data Files” on page 13-9

Ignore objectives satisfied in existing coverage data

Specify to analyze the model, ignoring satisfied coverage objectives, as specified in
Coverage data file.

Settings

Default: Off

 On
Ignores satisfied coverage objectives in Coverage data file during the analysis.

 Off
Generates results for all coverage objectives, including those in Coverage data file.

Dependency

This parameter enables Coverage data file.

Command-Line Information
Parameter: DVIgnoreCovSatisfied
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-12
• “Test Case Extension”

15-51



15 Simulink Design Verifier Configuration Parameters

Coverage data file

Specify a folder and file name for the file that contains data about satisfied coverage
objectives.

Settings

Default: ''

• Specify the name of the folder and file name that contains the satisfied coverage
objectives data

Click the Browse button to select an existing MATLAB file.

Command-Line Information
Parameter: DVCoverageDataFile
Type: character array
Value: any valid path and file name
Default: ''

See Also

• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-12
• “Test Case Extension”

Browse...

Browse to the file that contains data about satisfied coverage objectives.

Dependency

This button is enabled by Ignore objectives satisfied in existing coverage data.

Ignore objectives based on filter

Specify to analyze the model, ignoring the coverage objectives in the Coverage filter
file.

Settings

Default: Off

15-52



 Design Verifier Pane: Test Generation

 On
Ignores coverage objectives in the Coverage filter file during the analysis.

 Off
Generates results for all coverage objectives, including those in Coverage filter file.

Dependency

This parameter enables Coverage filter file.

Command-Line Information
Parameter: DVCovFilter
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Coverage Filtering” (Simulink Verification and Validation)

Coverage filter file

Specify a folder and file name for the file that contains the coverage objectives you
want to ignore. The Coverage filter file specifies model objects to exclude from model
coverage during test case generation.

Settings

Default: ''

• Specify the name of the folder and file name that contains the coverage objectives you
want to ignore.

Click the Browse button to select an existing MATLAB file.

Command-Line Information
Parameter: DVCovFilterFileName
Type: character array
Value: any valid path and file name
Default: ''

15-53



15 Simulink Design Verifier Configuration Parameters

See Also

“Coverage Filter Rules and Files” (Simulink Verification and Validation)

Browse...

Browse to the file that contains the coverage objectives you want to ignore.

Dependency

This button is enabled by Ignore objectives based on filter.

Include relational boundary objectives

Specify generation of test cases that satisfy relational boundary objectives. The objective
applies to blocks such as Relational Operator that have an explicit or implicit relational
operation. The tests check the relational operations in these blocks with:

• Equal operand values for integer and fixed-point operands.
• Operand values within a certain tolerance for all operands. For integer and fixed-

point operands, the tolerance is fixed. For floating-point operands, the tolerance is
computed using the inputs and a tolerance value that you specify. If you do not specify
a tolerance value, the default values are used.

Settings

Default: Off

 On
For supported blocks, generated test cases satisfy relational boundary objectives.

 Off
Generated test cases do not satisfy relational boundary objectives.

Dependencies

If you select this option, you can use default values or specify values for:

• “Floating point absolute tolerance” on page 15-55
• “Floating point relative tolerance” on page 15-56

15-54



 Design Verifier Pane: Test Generation

Command-Line Information
Parameter: DVIncludeRelationalBoundary
Type: character array
Value: 'on'|'off'
Default: 'off'

See Also

• “Relational Boundary” on page 7-28
• “Model Objects That Receive Coverage” (Simulink Verification and Validation)

Floating point absolute tolerance

Specify a value for absolute tolerance used in relational boundary tests. The relational
boundary objectives apply to blocks such as Relational Operator that have an explicit or
implicit relational operation. The tolerance value applies only if the relational operations
in those blocks use floating point operands.

• For integer operands, the tolerance value is fixed at 1.
• For fixed-point operands, the tolerance value is the least significant bit.

Settings

Default: 1.0000e-05

For supported blocks, the relational boundary tests check the relational operations in the
block with operand values that differ by a certain tolerance. The software calculates the
tolerance value using the following formula

max(absTol, relTol* max(|lhs|,|rhs|)), where:

• absTol is the absolute tolerance value that you specify.
• relTol is a relative tolerance value that you can specify.
• lhs is the left operand and rhs the right operand.
• max(x,y) returns x or y, whichever is greater.

Dependencies

To enter a value for this option, select “Include relational boundary objectives” on page
15-54.

15-55



15 Simulink Design Verifier Configuration Parameters

Command-Line Information
Parameter: DVAbsoluteTolerance
Type: double
Value: Any valid value
Default: 1.0000e-05

See Also

• “Relational Boundary” on page 7-28
• “Model Objects That Receive Coverage” (Simulink Verification and Validation)

Floating point relative tolerance

Specify a value for relative tolerance used in relational boundary tests. The relational
boundary objectives apply to blocks such as Relational Operator that have an explicit or
implicit relational operation. The tolerance value applies only if the relational operations
in those blocks use floating point operands.

• For integer operands, the tolerance value is fixed at 1.
• For fixed-point operands, the tolerance value is the least significant bit.

Settings

Default: 0.01

For supported blocks, the relational boundary tests check the relational operations in the
block with operand values that differ by a certain tolerance. The software calculates the
tolerance value using the following formula

max(absTol, relTol* max(|lhs|,|rhs|)), where:

• absTol is an absolute tolerance value that you can specify.
• relTol is the relative tolerance value that you specify.
• lhs is the left operand and rhs the right operand.
• max(x,y) returns x or y, whichever is greater.

Dependencies

To enter a value for this option, select “Include relational boundary objectives” on page
15-54.

15-56



 Design Verifier Pane: Test Generation

Command-Line Information
Parameter: DVRelativeTolerance
Type: double
Value: Any valid value
Default: 0.01

See Also

• “Relational Boundary” on page 7-28
• “Model Objects That Receive Coverage” (Simulink Verification and Validation)

15-57



15 Simulink Design Verifier Configuration Parameters

Design Verifier Pane: Design Error Detection

In this section...

“Design Error Detection Pane Overview” on page 15-59
“Dead logic” on page 15-59
“Identify active logic” on page 15-59
“Integer overflow” on page 15-60
“Division by zero” on page 15-61
“Check specified intermediate minimum and maximum values” on page 15-61
“Out of bound array access” on page 15-62

15-58



 Design Verifier Pane: Design Error Detection

Design Error Detection Pane Overview

Specify options that control how Simulink Design Verifier detects runtime errors in the
models it analyzes.

Dead logic

Specify whether to analyze your model for dead logic.

Settings

Default: Off

 On
Reports dead logic in your model.

 Off
Does not report dead logic in your model.

Dependency

Design error detection for dead logic is standalone analysis. When you enable Dead
logic, Active logic is enabled and other design error detection options are disabled.

Command-Line Information
Parameter: DVDetectDeadLogic
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Dead Logic Detection” on page 6-11

Identify active logic

Specify whether to analyze your model for active logic, in addition to dead logic.

Settings

Default: Off

15-59



15 Simulink Design Verifier Configuration Parameters

 On
Reports active logic in your model.

 Off
Does not report active logic in your model.

Dependency

To enable Identify active logic, select Dead logic.

Design error detection for dead logic is standalone analysis. When you enable Dead
logic, Identify active logic is enabled and other design error detection options are
disabled.

Command-Line Information
Parameter: DVDetectActiveLogic
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Dead Logic Detection” on page 6-11

Integer overflow

Specify whether to analyze your model for integer and fixed-point data overflow errors.

Settings

Default: On

 On
Reports integer or fixed-point data overflow errors in your model.

 Off
Does not report integer or fixed-point data overflow errors in your model.

Dependency

This parameter is disabled by Dead logic.

15-60



 Design Verifier Pane: Design Error Detection

Command-Line Information
Parameter: DVDetectIntegerOverflow
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Static Run-Time Error Detection”

Division by zero

Specify whether to analyze your model for division-by-zero errors.

Settings

Default: On

 On
Reports division-by-zero errors in your model.

 Off
Does not report division-by-zero errors in your model.

Dependency

This parameter is disabled by Dead logic.

Command-Line Information
Parameter: DVDetectDivisionByZero
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Static Run-Time Error Detection”

Check specified intermediate minimum and maximum values

Specify whether to check that the intermediate and output signals in your model are
within the range of user-specified minimum and maximum constraints.

15-61



15 Simulink Design Verifier Configuration Parameters

Settings

Default: Off

 On
Checks that intermediate and output signals are within the range of user-specified
minimum and maximum constraints.

 Off
Does not check that intermediate and output signals are within the range of user-
specified minimum and maximum constraints.

Dependency

This parameter is disabled by Dead logic.

Command-Line Information
Parameter: DVDesignMinMaxCheck
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Design Range Checks”

Out of bound array access

Specify whether to analyze your model for out of bound array access errors.

Settings

Default: Off

 On
Reports out of bound array access errors in your model.

 Off
Does not report out of bound array access errors in your model.

15-62



 Design Verifier Pane: Design Error Detection

Dependency

This parameter is disabled by Dead logic.

Command-Line Information
Parameter: DVDetectOutOfBounds
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Detect Out of Bound Array Access Errors” on page 6-38
• “Static Run-Time Error Detection”

15-63



15 Simulink Design Verifier Configuration Parameters

Design Verifier Pane: Property Proving

In this section...

“Property Proving Pane Overview” on page 15-65
“Assertion blocks” on page 15-66
“Proof assumptions” on page 15-67
“Strategy” on page 15-68
“Maximum violation steps” on page 15-69

15-64



 Design Verifier Pane: Property Proving

Property Proving Pane Overview

Specify options that control how Simulink Design Verifier proves properties for the
models it analyzes.

See Also

• “What Is Property Proving?” on page 12-2
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

15-65



15 Simulink Design Verifier Configuration Parameters

Assertion blocks

Specify whether Assertion blocks in your model are enabled or disabled.

Settings

Default: Use local settings

Use local settings

Enables or disables Assertion blocks based on the value of the Enable parameter of
each block. If a block's Enable parameter is selected, the block is enabled; otherwise,
the block is disabled.

Enable all

Enables all Assertion blocks in the model regardless of the settings of their Enable
parameters.

Disable all

Disables all Assertion blocks in the model regardless of the settings of their Enable
parameters.

Command-Line Information
Parameter: DVAssertions
Type: character array
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Assertion (Simulink)
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

15-66



 Design Verifier Pane: Property Proving

Proof assumptions

Specify whether Proof Assumption blocks in your model are enabled or disabled.

Settings

Default: Use local settings

Use local settings

Enables or disables Proof Assumption blocks based on the value of the Enable
parameter of each block. If a block's Enable parameter is selected, the block is
enabled; otherwise, the block is disabled.

Enable all

Enables all Proof Assumption blocks in the model regardless of the settings of their
Enable parameters.

Disable all

Disables all Proof Assumption blocks in the model regardless of the settings of their
Enable parameters.

Command-Line Information
Parameter: DVProofAssumptions
Type: character array
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Proof Assumption
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

15-67



15 Simulink Design Verifier Configuration Parameters

Strategy

Specify the strategy that Simulink Design Verifier uses when proving properties.

Settings

Default: Prove

Prove

Performs property proofs.
FindViolation

Searches only for property violations within the number of simulation steps specified
by the Maximum violation steps option.

ProveWithViolationDetection

Searches first for property violations within the number of simulation steps specified
by the Maximum violation steps option; then it attempts to prove properties for
which it failed to detect a violation. This strategy is a combination of the Prove and
FindViolation strategies.

Dependency

Selecting FindViolation or ProveWithViolationDetection enables the Maximum
violation steps parameter.

Command-Line Information
Parameter: DVProvingStrategy
Type: character array
Value: 'Prove' | 'FindViolation' | 'ProveWithViolationDetection'
Default: 'Prove'

See Also

• “What Is Property Proving?” on page 12-2
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

15-68



 Design Verifier Pane: Property Proving

Maximum violation steps

Specify the maximum number of simulation steps over which Simulink Design Verifier
searches for property violations.

Settings

Default: 20

The Simulink Design Verifier software does not search beyond the maximum number
of simulation steps that you specify. Therefore, it cannot identify violations that might
occur later in a simulation.

Dependency

This parameter is enabled when you set Strategy to FindViolation or
ProveWithViolationDetection.

Command-Line Information
Parameter: DVMaxViolationSteps
Type: int32
Value: any valid value
Default: 20

See Also

• “What Is Property Proving?” on page 12-2
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

15-69



15 Simulink Design Verifier Configuration Parameters

Design Verifier Pane: Results

In this section...

“Results Pane Overview” on page 15-71
“Save test data to file” on page 15-72
“Data file name” on page 15-73
“Include expected output values” on page 15-74
“Randomize data that do not affect the outcome” on page 15-75
“Display results of the analysis on the model” on page 15-76
“Generate separate harness model after analysis” on page 15-78
“Harness model file name” on page 15-79
“Reference input model in generated harness” on page 15-80
“Test File Name” on page 15-82
“Test Harness Name” on page 15-83

15-70



 Design Verifier Pane: Results

Results Pane Overview

Specify options that control how Simulink Design Verifier handles the results that it
generates.

See Also

“Results Interpretation and Use”

15-71



15 Simulink Design Verifier Configuration Parameters

Save test data to file

Save the test data that the Simulink Design Verifier analysis generates to a MAT-file.

Settings

Default: On

 On
Saves the test data that the analysis generates to a MAT-file.

 Off
Does not save the test data that the analysis generates.

Dependency

This parameter enables Data file name.

Command-Line Information
Parameter: DVSaveDataFile
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

• “Simulink Design Verifier Data Files” on page 13-9
• “Results Interpretation and Use”

15-72



 Design Verifier Pane: Results

Data file name

Specify a folder and file name for the MAT-file that contains the data generated during
the analysis, stored in an sldvData structure.

Settings

Default: $ModelName$_sldvdata

• Optionally, enter a path that is either absolute or relative to the path name specified
in Output folder.

• Enter a file name for the MAT-file.
• $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Save test data to file.

Command-Line Information
Parameter: DVDataFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_sldvdata'

See Also

• “Simulink Design Verifier Data Files” on page 13-9
• “Results Interpretation and Use”

15-73



15 Simulink Design Verifier Configuration Parameters

Include expected output values

Simulate the model using test case signals and include the output values in the Simulink
Design Verifier data file.

Settings

Default: Off

 On
Simulates the model using the test case signals that the analysis produces. For each
test case, the software collects the simulation output values associated with Outport
(Simulink) blocks in the top-level system and includes those values in the MAT-file
that it generates.

 Off
Does not simulate the model and collect output values for inclusion in the MAT-file
that the analysis generates.

Tips

• The TestCases.expectedOutput subfield of the MAT-file contains the output
values. For more information, see “Contents of sldvData Structure” on page 13-9.

• When Include expected output values is enabled, Simulink Design Verifier
successively simulates the model using each test case that it generates. Enabling this
option requires more time for Simulink Design Verifier to complete its analysis.

Dependency

This parameter is enabled by Save test data to file.

Command-Line Information
Parameter: DVSaveExpectedOutput
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Simulink Design Verifier Data Files” on page 13-9

15-74



 Design Verifier Pane: Results

• “Results Interpretation and Use”

Randomize data that do not affect the outcome

Specify whether to use random values instead of zeros for input signals that have no
impact on test or proof objectives.

Settings

Default: Off

 On
Assigns random values to test case or counterexample signals that do not affect the
outcome of test or proof objectives in a model. This option can enhance traceability
and improve your regression tests.

 Off
Assigns zeros to test case or counterexample signals that do not affect the outcome of
test or proof objectives in a model.

Tips

• This option replaces default data values with random values when the Simulink
Design Verifier internal analysis engine does not specify a value. When a value does
not influence the satisfaction of a test or proof objective, the generated analysis report
indicates that value with a dash (–).

• Simulink Design Verifier generated analysis reports show the setting of this option.
• Enable this option to enhance traceability when simulating test cases or

counterexamples. For instance, consider the following model:

15-75



15 Simulink Design Verifier Configuration Parameters

Only the signal entering the Switch block control port impacts its decision coverage.
If the Randomize data that does not affect outcome parameter is off, Simulink
Design Verifier uses zeros to represent the signals from In1 and In3. When inspecting
the results from test case or counterexample simulations, it is unclear which of these
signals passes through the Switch block because they have the same value. But if the
Randomize data that does not affect outcome parameter is on, the software uses
unique values to represent each of those signals. In this case, it is easier to determine
which signal passes through the Switch block.

Dependency

This parameter is enabled by Save test data to file.

Command-Line Information
Parameter: DVRandomizeNoEffectData
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Simulink Design Verifier Data Files” on page 13-9
• “Results Interpretation and Use”

Display results of the analysis on the model

Specify whether to display analysis results by highlighting the model and providing
context-sensitive details about the results.

Settings

Default: Off

 On
Highlight the model with the analysis results and provide context-sensitive details
about the results.

 Off
Do not display analysis results on the model.

15-76



 Design Verifier Pane: Results

Command-Line Information
Parameter: DVDisplayResultsOnModel
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Highlighted Results on the Model” on page 13-2
• “Results Interpretation and Use”

15-77



15 Simulink Design Verifier Configuration Parameters

Generate separate harness model after analysis

Create a harness model generated by the Simulink Design Verifier analysis.

Settings

Default: Off

 On
Saves the harness model that Simulink Design Verifier generates as a model file.

 Off
Does not save the harness model that Simulink Design Verifier generates.

Dependency

This parameter enables Harness model file name.

Command-Line Information
Parameter: DVSaveHarnessModel
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Simulink Design Verifier Harness Models” on page 13-16
• “Results Interpretation and Use”

15-78



 Design Verifier Pane: Results

Harness model file name

Specify a folder and file name for the harness model.

Settings

Default: $ModelName$_harness

• Optionally, enter a path that is either absolute or relative to the path name specified
in Output folder.

• Enter a file name for the harness model.
• $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Generate separate harness model after analysis.

Command-Line Information
Parameter: DVHarnessModelFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_harness'

See Also

• “Simulink Design Verifier Harness Models” on page 13-16
• “Results Interpretation and Use”

15-79



15 Simulink Design Verifier Configuration Parameters

Reference input model in generated harness

Use a Model block to reference the model to run in the harness model.

Settings

Default: Off

 On
Uses a Model block to reference the model to run in the harness model.

 Off
Uses a copy of the model in the harness model.

Tips

• If the Test Unit in the harness model is a subsystem, the values of the Simulink
simulation optimization parameters on the Configuration Parameters dialog box can
affect the coverage results.

Note: The simulation optimization parameters are on the following Configuration
Parameters dialog box panes:

• Optimization pane
• Optimization > Signals and Parameters pane
• Optimization > Stateflow pane

• On the Design Verifier  > Parameters pane, if you select the Apply parameters
parameter, Simulink Design Verifier uses a subsystem that contains a copy of the
original model in the harness model, even if you select Reference input model in
generated harness.

Command-Line Information
Parameter: DVModelReferenceHarness
Type: character array
Value: 'on' | 'off'
Default: 'off'

15-80



 Design Verifier Pane: Results

See Also

• “Simulink Design Verifier Harness Models” on page 13-16
• “Results Interpretation and Use”

15-81



15 Simulink Design Verifier Configuration Parameters

Test File Name

Name and path for test file name in Simulink Test

Settings

Default: $ModelName$_test

• Enter a file name for the test file containing Simulink Design Verifier results.
• $ModelName$ is a token that represents the model name.
• You can enter an absolute path, or a path relative to that specified by Output folder

in the Design Verifier pane.

Dependency

This parameter is visible and enabled with a Simulink Test license.

Command-Line Information
Parameter: DVSlTestFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_test'

See Also

• “Test Models Using Inputs Generated by Simulink Design Verifier” (Simulink Test)

15-82



 Design Verifier Pane: Results

Test Harness Name

Name of the test harness in Simulink Test

Settings

Default: $ModelName$_sldvharness

• Enter a valid name for the test harness built to simulate Simulink Design Verifier
test cases. The test harness corresponds to the test file specified by the parameter
Test File name.

• The $ModelName$ token represents the model name.
• Enter a valid MATLAB identifier for the test harness name.

Dependency

This parameter is visible and enabled with a Simulink Test license.

Command-Line Information
Parameter: DVSlTestHarnessName
Type: character array
Value: any valid file name
Default: '$ModelName$_sldvharness'

See Also

• “Test Models Using Inputs Generated by Simulink Design Verifier” (Simulink Test)

15-83



15 Simulink Design Verifier Configuration Parameters

Design Verifier Pane: Report

In this section...

“Report Pane Overview” on page 15-85
“Generate report of the results” on page 15-86
“Generate additional report in PDF format” on page 15-87
“Report file name” on page 15-88
“Include screen shots of properties” on page 15-89
“Display report” on page 15-90

15-84



 Design Verifier Pane: Report

Report Pane Overview

Specify options that control how Simulink Design Verifier reports its results.

See Also

• “Simulink Design Verifier Reports” on page 13-27
• “Results Interpretation and Use”

15-85



15 Simulink Design Verifier Configuration Parameters

Generate report of the results

Generate and save a Simulink Design Verifier report.

Settings

Default: Off

 On
Saves the HTML report that Simulink Design Verifier generates.

 Off
Does not generate a Simulink Design Verifier report.

Dependencies

When this parameter is enabled, you must enable Generate separate harness model
after analysis.

This parameter enables the following parameters:

• Generate additional report in PDF format
• Report file name
• Include screen shots of properties
• Display report

Command-Line Information
Parameter: DVSaveReport
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Simulink Design Verifier Reports” on page 13-27
• “Results Interpretation and Use”

15-86



 Design Verifier Pane: Report

Generate additional report in PDF format

Save an additional PDF version of the Simulink Design Verifier report.

Settings

Default: Off

 On
Saves an additional PDF version of the Simulink Design Verifier report.

 Off
Does not save an additional PDF version of the Simulink Design Verifier report.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportPDFFormat
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Simulink Design Verifier Reports” on page 13-27
• “Results Interpretation and Use”

15-87



15 Simulink Design Verifier Configuration Parameters

Report file name

Specify a folder and file name for the report that Simulink Design Verifier analysis
generates.

Settings

Default: $ModelName$_report

• Optionally, enter a path that is either absolute or relative to the path name specified
in Output folder.

• Enter a file name for the report that the analysis generates.
• $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_report'

See Also

• “Simulink Design Verifier Reports” on page 13-27
• “Results Interpretation and Use”

15-88



 Design Verifier Pane: Report

Include screen shots of properties

Includes screen shots of properties in the Simulink Design Verifier report. Only valid in
property-proving mode.

Settings

Default: Off

 On
Includes screen shots of properties in the Simulink Design Verifier report. Only valid
in property-proving mode.

 Off
Does not include screen shots of properties in the Simulink Design Verifier report.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportIncludeGraphics
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Simulink Design Verifier Reports” on page 13-27
• “Results Interpretation and Use”

15-89



15 Simulink Design Verifier Configuration Parameters

Display report

Display the report that the Simulink Design Verifier analysis generates after completing
its analysis.

Settings

Default: On

 On
Displays the report that the analysis generates after completing its analysis.

 Off
Does not display the report that the analysis generates after completing its analysis.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVDisplayReport
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

• “Simulink Design Verifier Reports” on page 13-27
• “Results Interpretation and Use”

15-90



16

Model Slicer

• “Highlight Functional Dependencies” on page 16-2
• “Refine Highlighted Model” on page 16-8
• “Create a Simplified Standalone Model” on page 16-21
• “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page

16-22
• “Simplify a Standalone Model by Inlining Content” on page 16-32
• “Workflow for Dependency Analysis” on page 16-36
• “Configure Model Highlight and Sliced Models” on page 16-39
• “Model Slicer Considerations and Limitations” on page 16-43
• “Using Model Slicer with Stateflow” on page 16-51
• “Isolating Dependencies of an Actuator Subsystem” on page 16-53
• “Isolate Subsystems for Functional Testing” on page 16-58
• “Use Existing .slslicex Simulation Time Window Data to Highlight Functional

Dependencies” on page 16-63
• “Programmatically Resolve Unexpected Behavior in a Model with Model Slicer” on

page 16-64
• “Simplification of Variant Systems” on page 16-76



16 Model Slicer

Highlight Functional Dependencies

Large models often contain many levels of hierarchy, complicated signals, and complex
mode logic. You can use Model Slicer to understand which parts of your model are
significant for a particular behavior. This example shows how to use Model Slicer to
explore the behavior of the sldvSliceClimateControlExample model. You first select
an area of interest, and then highlight the related blocks in the model. In this example,
you trace the dependency paths upstream of Out1 to highlight which portions of the
model affect its behavior.

Open the model and highlight the functional dependencies of a signal in the system:

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','sldv','examples'))

2 Open the sldvSliceClimateControlExample model.

sldvSliceClimateControlExample

3 Select Analysis > Design Verifier > Model Slicer... to open the Model Slice
Manager.

When you open the Model Slice Manager, Model Slicer compiles the model. You then
configure the model slice properties.

4 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

• Name: Out1Slice
•

Color:  (magenta)
• Signal Propagation: upstream

Model Slicer can also highlight the constructs downstream of or bidirectionally from
a block in your model, depending on which direction you want to trace the signal
propagation.

6 Add Out1 as a starting point. In the model, right-click Out1 and select Model Slicer
> Add as Starting Point.

16-2



 Highlight Functional Dependencies

16-3



16 Model Slicer

The Model Slicer now highlights the upstream constructs that affect Out1.

If you create two slice configurations, you can highlight the intersecting portions of their
highlights. Create a new slice configuration and view the intersecting portions of the slice
configuration you created above and the new slice configuration:

1 Create a new slice configuration with the following properties

• Name: Out3Slice
•

Color:  (red)
• Signal Propagation: upstream
• Starting point: Out3

16-4



 Highlight Functional Dependencies

2 In the Model Slice Manager, select both the Out1Slice slice configuration and the
Out3Slice slice configuration.

16-5



16 Model Slicer

16-6



 Highlight Functional Dependencies

Model Slicer highlights portions of the model as follows:

• The portions of the model that are exclusively upstream of Out1 are highlighted in
cyan.

• The portions of the model that are exclusively upstream of Out3 are highlighted in
red.

• The portions of the model that are upstream of both Out1 and Out3 are highlighted in
black.

After you highlight a portion of your model, you can then refine the highlighted model to
an area of interest. Or, you can create a simplified standalone model containing only the
highlighted portion of your model.

More About
• “Refine Highlighted Model” on page 16-8
• “Create a Simplified Standalone Model” on page 16-21
• “Model Slicer Considerations and Limitations” on page 16-43

16-7



16 Model Slicer

Refine Highlighted Model

After you highlight a model using Model Slicer, you can refine the dependency paths in
the highlighted portion of the model. Using Model Slicer, you can refine a highlighted
model by including only those blocks used in a portion of a simulation time window, or by
excluding blocks or certain inputs of switch blocks. By refining the highlighted portion of
your model, you can include only the relevant parts of your model.

In this section...

“Define a Simulation Time Window” on page 16-8
“Exclude Blocks” on page 16-13
“Exclude Inputs of a Switch Block” on page 16-17

Define a Simulation Time Window

You can refine a highlighted model to include only those blocks used in a portion of a
simulation time window. Defining the simulation time window holds some switch blocks
constant, and as a result removes inactive inputs.

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','sldv','examples'))

2 Open the sldvSliceClimateControlExample model.

sldvSliceClimateControlExample

3 Select Analysis > Design Verifier > Model Slicer to open the Model Slice
Manager.

When you open the Model Slice Manager, Model Slicer compiles the model. You then
configure the model slice properties.

4 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

• Name: Out1Simulation
•

Color:  (cyan)
• Signal propagation: upstream

16-8



 Refine Highlighted Model

16-9



16 Model Slicer

6 In the top level of the model, select the Out1 block as the slice starting point. Right-
click the Out1 block and select Model Slicer > Add as Starting Point.

The model is highlighted.
7 In the Model Slice Manager, select Simulation time window.
8 To specify the stop time of the simulation time window, click the run simulation

button  in the Model Slice Manager.
9 Set the Stop time to 10.
10 Click OK to start the simulation.

16-10



 Refine Highlighted Model

16-11



16 Model Slicer

The path is restricted to only those blocks that are active until the stop time that you
entered.

11 To see how this constraint affects the highlighted portion of the model, open the
Refrigeration subsystem.

The highlighted portion of the model includes only the input ports of switches that
are active in the simulation time window that you specified.

16-12



 Refine Highlighted Model

After you refine your highlighted model to include only those blocks used in a portion of
a simulation time window, you can then “Create a Simplified Standalone Model” on page
16-21 incorporating the highlighted portion of your model.

Exclude Blocks

You can refine a highlighted model to exclude blocks from the analysis. Excluding a
block halts the propagation of dependencies, so that signals and model items beyond the
excluded block in the analysis direction are ignored.

16-13



16 Model Slicer

Exclusion points are useful for viewing a simplified set of model dependencies. For
example, control feedback paths create wide dependencies and extensive model
highlighting. You can use an exclusion point to restrict the analysis, particularly if your
model has feedback paths.

Note:  Simplified standalone model creation is not supported for highlighted models with
exclusion points.

1 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
2

To add a new slice configuration, click the add new button .
3 Set the slice properties:

• Name: Out1Excluded
•

Color:  (red)
• Signal Propagation: upstream

4 In the top level of the model, select the Out1 block as the slice starting point. Right-
click the Out1 block and select Model Slicer > Add as Starting Point.

16-14



 Refine Highlighted Model

16-15



16 Model Slicer

The model is highlighted.
5 To open the subsystem, double-click Refrigeration.
6 Right-click the Fan switch block, and then select Model Slicer > Add as Exclusion

Point.

The blocks that are exclusively upstream of the Fan switch block are no longer
highlighted. The DT Fan Data Store Read block is no longer highlighted.

7 To see how this constraint affects the highlighted portion of the model, view the
parent system.

16-16



 Refine Highlighted Model

The DSM fan temp Data Store Memory block and the Write2 Data Store Write
block are no longer highlighted, because the DT Fan Data Store Read in the
Refrigeration subsystem no longer accesses them.

Exclude Inputs of a Switch Block

For complex signal routing, you can constrain the dependency analysis paths to a subset
of the available paths through switch blocks. Constraints appear in the Model Slice
Manager.

Note:  Simplified standalone model creation is not supported for highlighted models with
constrained switch blocks.

1 Double-click Refrigeration to open the subsystem.
2 Constrain the On switch block:

• Right-click the switch block and select Model Slicer > Add Constraint.
• In the Constraints dialog box, select Port 3.
• Click OK.

16-17



16 Model Slicer

16-18



 Refine Highlighted Model

The path is restricted to the Constant1 port on the switch. The blocks that are
upstream of Port 1 and Port 2 of the constrained switch are no longer highlighted.
Only the blocks upstream of Port 3 are highlighted.

3 To see how this constraint affects the highlighted portion of the model, view the
parent system.

16-19



16 Model Slicer

More About
• “Create a Simplified Standalone Model” on page 16-21
• “Model Slicer Considerations and Limitations” on page 16-43

16-20



 Create a Simplified Standalone Model

Create a Simplified Standalone Model

You can simplify simulation, debugging, and formal analysis of large and complex models
by focusing on areas of interest in your model. After highlighting a portion of your model
using Model Slicer, you can generate a simplified standalone model incorporating the
highlighted portion of your original model. Apply changes to the simplified standalone
model based on simulation, debugging, and formal analysis, and then apply these
changes back to the original model.

Note: Simplified standalone model creation is not supported for highlighted models with
exclusion points or constrained switch blocks. If you want to view the effects of exclusion
points or constrained switch blocks on a simplified standalone model, first create the
simplified standalone model, and then add exclusion points or constrained switch blocks.

1 Highlight a portion of your model using Model Slicer.

See “Highlight Functional Dependencies” on page 16-2 and “Refine Highlighted
Model” on page 16-8.

2 In the Model Slice Manager, click Generate slice.
3 In the Select File to Write dialog box, select the save location and enter a model

name.

The simplified standalone model contains the highlighted model items.
4 To remove highlighting from the model, close the Model Slice Manager.

When generating a simplified standalone model from a model highlight, you might need
to refine the highlighted model before the simplified standalone model can compile. See
the “Model Slicer Considerations and Limitations” on page 16-43 for compilation
considerations.

More About
• “Basic Workflow for Simulink Design Verifier” on page 1-31

16-21



16 Model Slicer

Highlight Active Time Intervals by Using Activity-Based Time
Slicing

Stateflow states and transitions can be active, inactive, or sleeping during model
simulation. You can use Model Slicer to constrain model highlighting to only highlight
the time intervals in which certain Stateflow “States” (Stateflow) and “Transitions”
(Stateflow) are active. Therefore, you are able to refine your area of interest to only those
portions of your model that affect model simulation during the operation of the selected
states and transitions. You can also constrain model highlighting to the intersection of
the time intervals of two or more states or transitions.

In this section...

“Highlighting the Active Time Intervals of a Stateflow State or Transition” on page
16-22
“Activity-Based Time Slicing Limitations and Considerations” on page 16-31
“Stateflow State and Transition Activity” on page 16-31

Highlighting the Active Time Intervals of a Stateflow State or Transition

The slslicer_fuelsys_activity_slicing model contains a fault-tolerant fuel
control system. In this tutorial, you use activity-based time slicing to refine a model
highlight to only those time intervals in which certain states and transitions are active.
You must be familiar with how to “Highlight Functional Dependencies” on page 16-2 by
using Model Slicer.

Create a Dynamic Slice Highlight for an Area of Interest

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','sldv','examples'))

2 Open the slslicer_fuelsys_activity_slicing model.

open_system('slslicer_fuelsys_activity_slicing')

3 Open Model Slicer and add the control logic Stateflow chart in the fuel rate
controller subsystem as a Model Slicer starting point.

4 Highlight the portions of the model that are upstream of the control logic
Stateflow chart.

16-22



 Highlight Active Time Intervals by Using Activity-Based Time Slicing

5 Simulate the model within a restricted simulation time window (maximum 20
seconds) to highlight only the areas of the model upstream of the starting point and
active during the time window of interest.

Constrain the Model Highlight to the Active Time Interval of a Stateflow State

1 To open the Model Slice Manager, from the Simulink menu, select Analysis >
Design Verifier > Model Slicer .

2 Navigate to the control logic Stateflow chart in the fuel rate controller
subsystem.

open_system('slslicer_fuelsys_activity_slicing/fuel rate controller/control logic')

3 To constrain the model highlight to only those time intervals in which the
Fueling_Mode > Running > Low_Emissions > Warmup state is active, right-
click the Warmup state and select Model Slicer > Constrain to active time
intervals for “Warmup”.

16-23



16 Model Slicer

16-24



 Highlight Active Time Intervals by Using Activity-Based Time Slicing

Model Slicer is updated to highlight only those portions of the model that are active
during the time intervals in which the warmup state is active.

16-25



16 Model Slicer

16-26



 Highlight Active Time Intervals by Using Activity-Based Time Slicing

The Model Slice Manager is also updated to show the time interval in which the
warmup state is active:

Actual simulation time: 0.01 to 3.86 seconds : 1 active interval

The highlight shows a normal to fail transition in the Pressure state, showing
that a pressure failure occurred during the time interval in which the Warmup state
was active.

Constrain the Model Highlight to the Intersection of the Active Time Intervals of a Stateflow
State and Transition

1 Clear any time interval constraints from the Model Slice Manager.
2 Constrain the model highlight to only those time intervals in which the O2 > fail

state is active.

16-27



16 Model Slicer

16-28



 Highlight Active Time Intervals by Using Activity-Based Time Slicing

Model Slicer is updated to highlight only those portions of the model that are active
during the time intervals in which the O2 > fail state is active. The Model Slice
Manager is also updated to show the time interval in which the O2 > fail state is
active:

Actual simulation time: 4.83 to 20 seconds : 1 active interval
3 To constrain the highlighting to the time interval in which the O2 > fail state is

active and the normal to fail transition occurs for the Throttle chart, right-click
the normal to fail transition and add it as a constraint. Model Slicer is updated
to highlight only those portions of the model that are active during the intersection
of the time intervals in which the O2 > fail state is active and the normal to fail
transition occurs for the Throttle chart.

16-29



16 Model Slicer

16-30



 Highlight Active Time Intervals by Using Activity-Based Time Slicing

The Model Slice Manager is also updated to show the time interval in which the O2
> fail state is active and the normal to fail transition occurs for the Throttle
chart:

Actual simulation time: 13.87 to 13.87 seconds : 1 active interval

Activity-Based Time Slicing Limitations and Considerations

For limitations and considerations of activity-based time slicing, see “Model Slicer
Considerations and Limitations” on page 16-43.

Stateflow State and Transition Activity

For more information on Stateflow state and transition activity, see “Chart Simulation
Semantics” (Stateflow), “Types of Chart Execution” (Stateflow), and “Syntax for States
and Transitions” (Stateflow).

More About
• “Using Model Slicer with Stateflow” on page 16-51
• “States” (Stateflow)
• “Transitions” (Stateflow)

16-31



16 Model Slicer

Simplify a Standalone Model by Inlining Content

You can reduce file dependencies by inlining model content when you generate the sliced
model. Inlining brings functional content into the sliced model and can eliminate model
references, library links, and variant structures that are often not needed for model
refinement or debugging.

If you want to disable inlining for certain block types, open the Model Slice Manager and

click the options button . Select only the block types for which you want to inline
content. For information on block-specific inlining behavior, see “Inline Content Options”
on page 16-41.

This example demonstrates inlining content of a model referenced by a Model block.

1 Add the path to the example and open the model

addpath(fullfile(docroot,'toolbox','sldv','examples'))

open_system('sldvSliceEngineDynamicsExample')

2 From the menu, select Analysis > Design Verifier > Model Slicer to open the
Model Slice Manager.

3 In the model, right-click the MAP outport and select Model Slicer > Add as
Starting Point. The path is highlighted through the Model block.

16-32



 Simplify a Standalone Model by Inlining Content

4 Create a sliced model from the highlight. In the Model Slice Manager, click the
Generate slice button.

5 Enter a file name for the sliced model.
6 The sliced model contains the highlighted model content. The model reference is

removed.

16-33



16 Model Slicer

7 Click the arrow to look under the mask of the ThrottleAndManifold subsystem.
The content from the referenced model is inlined into the model in the masked
subsystem.

16-34



 Simplify a Standalone Model by Inlining Content

16-35



16 Model Slicer

Workflow for Dependency Analysis

In this section...

“Dependency Analysis Workflow” on page 16-36
“Dependency Analysis Objectives” on page 16-37

Model analysis includes determining dependencies of blocks, signals, and model
components. For example, to view blocks affecting a subsystem output, or trace a signal
path through multiple switches and logic. Determining dependencies can be a lengthy
process, particularly for large or complex models. Use Model Slicer as a simple way to
understand functional dependencies in large or complex models. You can also use Model
Slicer to create simplified standalone models that are easier to understand and analyze,
yet retain their original context.

Dependency Analysis Workflow

The dependency analysis workflow identifies the area of interest in your model,
generates a sliced model, revises the sliced model, and incorporates those revisions in the
main model.

16-36



 Workflow for Dependency Analysis

Dependency Analysis Objectives

To identify the area of interest in your model, determine objectives such as:

• What item or items are you analyzing? Analysis begins with at least one starting
point.

• In what direction does the analysis propagate? The dependency analysis propagates
upstream, downstream, or bidirectionally from the starting points.

• What model items or paths do you want to exclude from analysis?
• What paths do you want to constrain? If your model has switches, you can constrain

the switch positions for analysis.
• Is your model a closed-loop system? If so, the highlighted portion of the model can

include model dependencies from the feedback loop. Consider excluding blocks from
the feedback loop to refine the highlighted portion of the model.

16-37



16 Model Slicer

• Do you want to analyze static dependencies, or include simulation effects? Static
analysis considers model dependencies for possible simulation paths. Simulation-
based analysis highlights only paths active during simulation.

Related Examples
• “Highlight Functional Dependencies” on page 16-2
• “Refine Highlighted Model” on page 16-8
• “Create a Simplified Standalone Model” on page 16-21

16-38



 Configure Model Highlight and Sliced Models

Configure Model Highlight and Sliced Models
In this section...

“Model Slice Manager” on page 16-39
“Model Slicer Options” on page 16-39
“Storage Options” on page 16-39
“Refresh Highlighting Automatically” on page 16-40
“Sliced Model Options” on page 16-40
“Trivial Subsystems” on page 16-41
“Inline Content Options” on page 16-41

Model Slice Manager

Set the properties of your model highlight and standalone sliced model using the Model
Slice Manager.

Click the toggle mode button  to switch between model edit mode and model
highlight mode.

If automatic highlighting is disabled in the slice settings, refresh the model highlight

using the refresh button . Refresh the highlight after changing the slice
configuration.

Model Slicer Options

You can customize the slice behavior using the options dialog box, which is accessed with

the options button .

Storage Options

Changes you make to a model slice configuration are saved automatically. You can store
the slice configuration in the model SLX file, or in an external SLMS file. Saving the
configuration externally can be useful if your SLX file is restricted by a change control
system.

16-39



16 Model Slicer

To set the storage location, click the options  button in the Model Slice Manager and
set the location in the Storage options pane.

Settings

Store in <model_name>.slx
Saves the model slice configuration in your model’s SLX file

Store in external file
Saves the model slice configuration in a separate SLMS file you specify by clicking
the Save As button. The model slice configuration filename is shown in File.

Refresh Highlighting Automatically

Enables automatic refresh of a model highlight after changing the slice configuration.

Settings

on (default)
Model highlighting refreshes automatically.

off

Model highlighting must be refreshed manually. Click the refresh button  in the
Model Slice Manager to refresh the highlight.

Sliced Model Options

You can control what items are retained when you create a sliced model from a model
highlight using the options in the Sliced model options pane.

Option On (selected) Off (cleared)

Retain signal
observers

Signal observers, such as
scopes, displays, and test
condition blocks, are retained
in the sliced model.

Signal observers are not retained in
the sliced model (default).

Retain root-
level inports
and outports

Root-level ports are retained
in the sliced model (default).

Root-level ports are not retained in
the sliced model.

16-40



 Configure Model Highlight and Sliced Models

Option On (selected) Off (cleared)

Expand trivial
subsystems

Trivial subsystems are
expanded in the sliced model
and the subsystem boundary
is removed (default).

Trivial subsystems are not expanded
in the sliced model and the subsystem
boundary is retained. See “Trivial
Subsystems” on page 16-41.

Trivial Subsystems

If a subsystem has all of these characteristics, Model Slicer considers the subsystem
trivial:

• If the subsystem is virtual, it contains three or fewer nonvirtual blocks.
• If the subsystem is atomic, it contains one or fewer nonvirtual blocks.
• The subsystem has two or fewer inports.
• The subsystem has two or fewer outports.
• The active inport or outport blocks of the subsystem have default block parameters.
• The system does not contain Goto Tag Visibility blocks.
• In the Block Properties dialog box, the subsystem Priority is empty.
• The data type override parameter (if applicable) is set to use local settings.

Note: If you generate a sliced model which does not remove contents of a particular
subsystem, the subsystem remains intact in the sliced model.

Inline Content Options

When you create a sliced model from a highlight, model items can be inlined into the
sliced model. The Inline content options pane controls which model components are
inlined in generating a sliced model.

Model Component Inlining on (selected) Inlining off (cleared)

Libraries Model items inside sliced
libraries are inlined in
the sliced model and the
library link is removed.
(default)

Model items inside sliced libraries are
not inlined in the sliced model and
library link remains in place.

16-41



16 Model Slicer

Model Component Inlining on (selected) Inlining off (cleared)

Masked
subsystems

Model items inside sliced
masked subsystems are
inlined in the sliced model.
(default)

The mask is retained in the
sliced model.

Model items inside sliced masked
subsystems are not inlined in the sliced
model and the mask is retained.

Model blocks Model items are inlined to
the sliced model from the
model referenced by the
Model block. The Model
block is removed. (default)

Note: Model Slicer cannot
inline model blocks that
are not in Normal mode.

Model items are not inlined to the sliced
model from the model referenced by
the Model block. The Model block is
retained.

Variants Model items are inlined to
the sliced model from the
active variant. Variants
are removed. (default)

Model items are not inlined to the sliced
model from the variant. The variant is
retained.

Related Examples
• “Highlight Functional Dependencies” on page 16-2
• “Refine Highlighted Model” on page 16-8
• “Simplify a Standalone Model by Inlining Content” on page 16-32

16-42



 Model Slicer Considerations and Limitations

Model Slicer Considerations and Limitations

Consider these behaviors and limitations when working with Model Slicer.

In this section...

“Model Highlighting and Model Editing” on page 16-43
“Standalone Sliced Model Generation” on page 16-43
“Sliced Model Considerations” on page 16-44
“Port Attribute Considerations” on page 16-44
“Simulation Time Window Considerations” on page 16-45
“Simulation-based Sliced Model Simplifications” on page 16-45
“Starting Points Not Supported” on page 16-47
“Model Slicer Support Limitations for Simulink Software Features” on page 16-47
“Model Slicer Support Limitations for Simulink Blocks” on page 16-47
“Model Slicer Support Limitations for Stateflow” on page 16-49

Model Highlighting and Model Editing

You cannot edit the model when a slice highlight is active. You can switch into model
edit mode and preserve the highlights. When you switch back to slice mode, the slice
configuration is recomputed and the highlight is updated.

Standalone Sliced Model Generation

Sliced model generation requires one or more starting points for the model highlight.
Sliced model generation is not supported for the following:

• Forward-propagating (including bidirectional) dependencies
• Constraints
• Exclusion points

Sliced model generation requires a writable present working folder in MATLAB.

16-43



16 Model Slicer

Sliced Model Considerations

When you generate a sliced model from a model highlight, model simplification can
change simulation behavior, or prevent the sliced model from compiling. For example:

• Model simplification can change the sorted execution order in a sliced model
compared to the original model. The changed sorted execution order can affect the
sliced model simulation behavior.

• If you generate a sliced model containing a bus, but not the source signal of that bus,
the sliced model can contain unresolved bus elements.

• If you generate a sliced model that inlines a subset of the contents of a masked block,
ensure that the subsystem contents resolve to the mask parameters. If the contents
and mask do not resolve, it is possible that the sliced model does not compile.

• If the source model uses a bus signal, ensure that the sliced model signals are
initialized correctly. Before you create the sliced model, consider including an explicit
copy of the bus signal in the source model. For example, you can include a Signal
Conversion block with the Output option set to Signal Copy.

• For solver step sizes set to auto, Simulink calculates the maximum time step in part
based on the blocks in the model. If the sliced model removes blocks that affect the
time step determination, the time step of the sliced model can differ from the source
model. The time step difference can cause simulation differences. Consider setting
step sizes explicitly to the same values calculated in the source model.

Port Attribute Considerations

Blocks that Model Slicer removes during model simplification can be used to determine
compiled attributes, such as inherited sample times, signal dimensions, and data
types. Model Slicer can change sliced model port attributes during model simplification
to resolve underspecified model port attributes. If Model Slicer cannot resolve these
inconsistencies, you can resolve some model port attribute inconsistencies by:

• Explicitly specifying attributes in the source model instead of relying on propagation
rules.

• Including in the sliced model the blocks that are responsible for the attribute
propagation in your source model. Before you slice the model, add these blocks as
additional starting points in the source model highlight.

• Not inlining the model blocks that are responsible for model port attributes into the
sliced model. For more information on model items that you can inline into the sliced
model, see “Inline Content Options” on page 16-41.

16-44



 Model Slicer Considerations and Limitations

Because of the way Simulink handles model references, you cannot simultaneously
compile two models that both contain a model reference to the same model. Model Slicer
enters the Slicer Locked (for attribute checking) mode when you generate a sliced
model if the following conditions are true:

• The parent model contains a referenced model
• The highlighted portion of the parent model contains the referenced model
• The referenced model is not inlined in the sliced model due to one of the following

• You choose not to inline model blocks in the Inline content options pane of the
Model Slicer options

• Model Slicer cannot inline the referenced model. For more information on model
items that Model Slicer cannot inline, see “Inline Content Options” on page 16-41

To continue refining the highlighted portion of the parent model, you must first activate

slice highlight mode .

Simulation Time Window Considerations

Depending on the step size of your model and the values you enter for the start time and
stop time of the simulation time window, Model Slicer may alter the actual simulation
start time and stop time used.

• If you enter a stop or start time that falls between time steps for your model's
solver, Model Slicer will instead use a stop or start time that matches the time step
previous to the value you entered. For more information on step sizes in Simulink, see
“Solvers” (Simulink).

• The stop time for the simulation time window cannot be greater than the total
simulation time.

Simulation-based Sliced Model Simplifications

When you slice a model using a simulation time window, some blocks in the source
model, such as switch blocks, logical operator blocks, and others, can be replaced when
creating the simplified standalone model. For example, a switch block that always passes
one input is removed, and the active input is directly connected to the output destination.
The unused input signal is also removed from the standalone model.

16-45



16 Model Slicer

The following table describes the blocks Model Slicer can replace during model
simplification:

Block in Source Model Simplification

Switch

Multiport Switch

If only one input port is active, the switch
is replaced by a signal connecting the
active input to the block output.

Enabled Subsystem or Model If the subsystem or model is always
enabled, remove control input and convert
to standard subsystem or model.

If the subsystem is never enabled, replace
subsystem with a constant value defined by
the initial condition.

Triggered Subsystem or Model If the subsystem or model is always
triggered, remove trigger input and convert
to standard subsystem or model.

If the subsystem is never triggered, replace
subsystem with a constant value defined by
the initial condition.

Enabled and Triggered Subsystem or
Model

If the subsystem is alwaysexecuted, convert
to standard subsystem or model

If the subsystem is never executed, replace
subsystem with a constant value defined by
the initial condition.

Merge If only one input port is active, the merge is
replaced by a signal connecting the active
input to the block output.

If

If Action

If only one action subsystem is active,
convert to standard subsystem or mode and
remove the If block.

Switch Case

Switch Case Action

If only one action subsystem is active,
convert to standard subsystem or mode and
remove the Switch Case block.

16-46



 Model Slicer Considerations and Limitations

Block in Source Model Simplification

Logical operator Replace with constant when the block
always outputs true or always outputs
false.

Replace input signal with constant if input
signal is always true or always false.

Starting Points Not Supported

Model Slicer does not support these model items as starting points.

• Virtual blocks, other than subsystem Inport and Outport blocks
• Output signals from virtual blocks that are not subsystems

Model Slicer Support Limitations for Simulink Software Features

Model Slicer does not support these features.

• Arrays of buses
• Analysis of Simulink Test test harnesses
• Models that contain Simscape™ physical modeling blocks
• Models that contain algebraic loops
• Loading initial states from the source model for sliced model generation, such as data

import/export entries. Define initial states explicitly for the sliced model in the sliced
model configuration parameters.

Model Slicer Support Limitations for Simulink Blocks

The table lists Model Slicer support limitations for Simulink Blocks:

Block Limitation

For Each Subsystem block The simulation impact is ignored for blocks in a For
Each subsystem. Therefore, applying a simulation time
window returns the same dependency analysis result as a
dependency analysis using no simulation time window.

Function Caller block Model Slicer does not support Function Caller blocks.

16-47



16 Model Slicer

Block Limitation

MATLAB Function block Model Slicer assumes that any output depends on all
inputs in the upstream direction, and any input affects all
outputs in the downstream direction.

Merge block If you generate a slice using a simulation time window,
Merge blocks are removed in the standalone model if only
a single path is exercised.

Model block Model Slicer does not support multiple instances of the
same Model block with their Simulation mode set to
Normal.

Model Slicer does not resolve data dependencies generated
by global data store memory in Model blocks with
Simulation mode set to Accelerator.

Model Slicer does not support function-call root-level
Inport blocks. For more information, see Export-Function
Models (Simulink).

Model Slicer does not analyze the contents within a
reference to a “Protected Model” (Simulink). When you
slice a model that contains a protected model reference,
Model Slicer includes the entire model reference in the
sliced model.

Resettable Subsystem block Model Slicer does not support Resettable Subsystem
blocks.

S-function block Model Slicer assumes that any output depends on all
inputs in the upstream direction, and any input affects all
outputs in the downstream direction.

Model Slicer does not determine dependencies that result
from an S-function block accessing model information
dependent on a simulation time window.

State Read block Model Slicer does not support State Read blocks.
State Write block Model Slicer does not support State Write blocks.

16-48



 Model Slicer Considerations and Limitations

Model Slicer Support Limitations for Stateflow

• When you highlight models containing a Stateflow chart or state transition table,
Model Slicer assumes that any output from the Chart block or State Transition Table
block depends on all inputs to the Chart block or State Transition Table block.

• When you slice a model with a Stateflow chart or state transition table, Model Slicer
does not simplify the chart or table. The chart or table is included in its entirety in the
sliced model.

• If you do not “Define a Simulation Time Window” on page 16-8 when you highlight
functional dependencies in a Stateflow chart or state transition table, Model Slicer
assumes that all elements of the chart or table are active. Model Slicer highlights the
entire contents of such charts and tables.

• When you highlight functional dependencies in a Stateflow chart or state transition
table for a defined simulation time window, Model Slicer does not highlight only the
states and transitions that affect the selected starting point. Model Slicer instead all
elements that are active in the time window that you specify.

• Model Slicer does not determine dependencies between Stateflow graphical functions
and function calls in other Stateflow charts.

• Graphical functions and their contents that were not active during the selected time
window can potentially remain highlighted in some cases.

• Entry into states that are preempted due to events can potentially remain highlighted
in some cases. For example, after a parent state is entered, an event action can
exit the state and preempt entry into the child state. In such a case, Model Slicer
highlights the entry into the child state.

• Model Slicer does not support:

• Embedded MATLAB Function blocks
• Simulink functions
• Truth Table blocks
• Machine-parented data or events in Stateflow.

.

Activity-Based Time Slicing Considerations for Stateflow

State activity refers to during/exit actions, as measured by the 'Executed Substate'
decision coverage.

16-49



16 Model Slicer

• Entry into a state does not constitute activity
• The active time interval for a state or transition includes the moment in which the

selected state exits and the subsequent state is entered
• Indirect exits from a state or transition do not constitute activity. For example, if a

state C exits because its parent state P exits, state C is not considered active

For more information on decision coverage for Stateflow charts, see“Decision Coverage
for Stateflow Charts” (Simulink Verification and Validation).

When you “Highlight Active Time Intervals by Using Activity-Based Time Slicing”
on page 16-22, you can select only states and transitions as activity constraints.
Additionally, you cannot select the following Stateflow objects as constraints:

• Parallel states
• Transitions without conditions, such as unlabeled transitions which do not receive

decision coverage
• States or transitions within library-linked charts
• XOR states without siblings. For example, if a state P has only one child state C,

you cannot select state C as an activity constraints, because state P does not receive
decision coverage for the executed substate

See Also
“Algebraic Loops” (Simulink) | “Solver Pane” (Simulink)

16-50



 Using Model Slicer with Stateflow

Using Model Slicer with Stateflow

In this section...

“Model Slicer Highlighting Behavior for Stateflow Elements” on page 16-51
“Using Model Slicer with Stateflow State Transition Tables” on page 16-52
“Support Limitations for Using Model Slicer with Stateflow” on page 16-52

You can use Model Slicer highlighting to visually verify the logic in your Stateflow charts
or tables. After you “Define a Simulation Time Window” on page 16-8, you use Model
Slicer to highlight and slice Stateflow elements that are active within the selected time
window.

Note: If you do not “Define a Simulation Time Window” on page 16-8 when you highlight
functional dependencies in a Stateflow chart or table, Model Slicer assumes that all
elements of the chart or table are active. Model Slicer highlights the entire contents of
such charts and tables.

In this section...

“Model Slicer Highlighting Behavior for Stateflow Elements” on page 16-51
“Using Model Slicer with Stateflow State Transition Tables” on page 16-52
“Support Limitations for Using Model Slicer with Stateflow” on page 16-52

Model Slicer Highlighting Behavior for Stateflow Elements

Model Slicer highlights a Stateflow element if it was executed in the specified time
window. Some examples include:

• A chart, if it is activated in the specified a time window.
• A state, if its entry, exit, or during actions are executed in the specified a time

window.
• A parent state, if its child state is highlighted in the specified a time window.
• A transition, if it is taken in the specified time window, such as inner, outer, and

default. If the conditions of a transition are evaluated, but the transition is not taken,
Model Slicer does not highlight the transition.

16-51



16 Model Slicer

Using Model Slicer with Stateflow State Transition Tables

Model Slicer does not directly highlight the contents of Stateflow state transition tables.
To view highlighted functional dependencies in a state transition table, you must view
the auto-generated diagram for the state transition table. For instructions on how to view
the auto-generated diagram for the state transition table, see “Generate Diagrams from
State Transition Tables” (Stateflow).

Support Limitations for Using Model Slicer with Stateflow

For support limitations when you use Model Slicer with Stateflow, see “Model Slicer
Support Limitations for Stateflow” on page 16-49.

More About
• “Highlight Functional Dependencies” on page 16-2
• “Refine Highlighted Model” on page 16-8
• “Chart Simulation Semantics” (Stateflow)

16-52



 Isolating Dependencies of an Actuator Subsystem

Isolating Dependencies of an Actuator Subsystem

This example demonstrates highlighting model items that a subsystem depends on. It
also demonstrates generating a standalone model slice from the model highlight.

In this section...

“Choose Starting Points and Direction” on page 16-53
“View Precedents and Generate Model Slice” on page 16-55

Choose Starting Points and Direction

1 Open the f14 example model.

f14

2 Select Analysis > Design Verifier > Model Slicer to open the Model Slice
Manager.

16-53



16 Model Slicer

3 In the Model Slice Manager, click the arrow to expand the Slice configuration list
list. Set the slice properties:

• Name: Actuator_slice
• To the right of Name, click the colored square to set the highlight color. Choose

magenta  from the palette.
• Signal Propagation: upstream.

4 Add the Actuator Model subsystem as a starting point. In the model, right-click
the Actuator Model subsystem and select Model Slicer > Add as Starting
Point.

16-54



 Isolating Dependencies of an Actuator Subsystem

View Precedents and Generate Model Slice

1 The model highlights the upstream dependencies of the Actuator Model
subsystem.

16-55



16 Model Slicer

Trace the following dependency path. Aircraft Dynamics Model is highlighted
via the Pitch Rate q signal, which is an input to Controller, the output of which
feeds Actuator Model.

2 Generate a standalone model containing the highlighted model items:

a In the Model Slice Manager, click Generate slice.
b In the Select File to Write dialog box, select the save location and enter

actuator_slice_model.
c Click Save.

3 The sliced model contains the highlighted model items.

16-56



 Isolating Dependencies of an Actuator Subsystem

4 To remove highlighting from the model, close the Model Slice Manager.

16-57



16 Model Slicer

Isolate Subsystems for Functional Testing

If your model interest centers on a subsystem, you can create a standalone model for
subsystem debugging and refinement. The standalone model isolates the subsystem and
relevant signals. You can observe the subsystem behavior without simulating the entire
source model.

Note: You cannot slice virtual subsystems. If you want to isolate a virtual subsystem,
first convert it to an atomic subsystem.

Isolate a Subsystem with Simulation-Based Inputs

If you want to observe the simulation behavior of a subsystem, you can include logged
signal inputs in the standalone model. Specify a simulation time window when you
configure the model slice. For large models, observing subsystem behavior in a separate
model can save time compared to compiling and running the entire source model.

This example demonstrates how to include simulation effects for the controller subsystem
of a cruise control system.

16-58



 Isolate Subsystems for Functional Testing

1 Open the model slice manager. From the menu, click Analysis > Design Verifier >
Model Slicer.

2 Select the starting point for dependency analysis. Right-click a block, signal, or port,
and select Model Slicer > Add as starting point.

3 Select the subsystem to isolate in the sliced model. Right-click the subsystem, and
select Model Slicer > Slice subsystem.

In the example model, selecting Slice subsystem for the controller limits the
dependency analysis to the path between the starting point (the throttle outport) and
the Controller subsystem.

16-59



16 Model Slicer

4 Specify the simulation time window:

a Select Simulation time window in the model slice manager.
b

Click the run simulation button  in the model slice manager.
c Enter the simulation stop time, and click OK.

16-60



 Isolate Subsystems for Functional Testing

Model slicer analyzes the model dependencies for the simulation interval.
5 Click Generate slice to extract the subsystem and logged signals. Enter a file name

for the sliced model.

Based on the dependency analysis, signal inputs are supplied to the subsystem with
a block.

In the sliced model shown, the sliced model signal builder contains one test case
representing the signals into the controller subsystem for simulation time 0–45
seconds.

16-61



16 Model Slicer

See Also
“Model Slicer Considerations and Limitations” on page 16-43 | “Highlight Functional
Dependencies” on page 16-2

16-62



 Use Existing .slslicex Simulation Time Window Data to Highlight Functional Dependencies

Use Existing .slslicex Simulation Time Window Data to Highlight
Functional Dependencies

Model Slicer uses simulation results when highlighting functional dependencies in a
model using a restricted simulation time window. For very large or complex models,
the simulation time can be lengthy. When you highlight functional dependencies in a
model using a restricted simulation time window, Model Slicer saves the simulation
time window results in a file <current_folder>\modelslicer\<model_name>
\<model_name>.slslicex.

If you want to highlight functional dependencies in the model again at another time, you
can use the existing simulation time window data in <current_folder>\modelslicer
\<model_name>\<model_name>.slslicex to highlight and refine functional
dependencies in the model without needing to resimulate the model.

1 Open the model in Simulink.
2 Select Analysis > Design Verifier > Model Slicer... to open the Model Slice

Manager.
3 Select Simulation time window.
4

Click Use existing simulation data .
5 Navigate to the existing simulation data in <current_folder>\modelslicer

\<model_name>\<model_name>.slslicex and click Open.

Model Slicer then uses the existing simulation data to highlight the model without
needing to resimulate the model.

More About
• “Highlight Functional Dependencies” on page 16-2

16-63



16 Model Slicer

Programmatically Resolve Unexpected Behavior in a Model with
Model Slicer

In this section...

“Prerequisites” on page 16-64
“Find and Isolate the Area of the Model Responsible for Unexpected Behavior” on page
16-64
“Investigate the Sliced Model and Debug the Source Model” on page 16-70

In this tutorial, you evaluate a Simulink model, detect unexpected behavior, and use
Model Slicer to programmatically isolate and resolve the unexpected behavior. When you
plan to reuse your API commands and extend their use to other models, a programmatic
approach is useful.

Prerequisites

Be familiar with the behavior and purpose of Model Slicer and the functionality of the
Model Slicer API. “Highlight Functional Dependencies” on page 16-2 outlines how to use
Model Slicer user interface to explore models. The slslicer, slsliceroptions, and
slslicertrace function reference pages contain the Model Slicer API command help.

Find and Isolate the Area of the Model Responsible for Unexpected
Behavior

The sldvSliceCruiseControlHarness test harness model contains a cruise controller
subsystem sldvSliceCruiseControl and a block, TestCases, containing a test
case for this subsystem. You first simulate the model to execute the test case. You then
evaluate the behavior of the model to find and isolate areas of the model responsible for
unexpected behavior:

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','sldv','examples'))

2 Open the sldvSliceCruiseControlHarness test harness for the cruise control
model.

open_system('sldvSliceCruiseControlHarness')

16-64



 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Note: The Assertion block is set to Stop simulation when assertion fails when
the actual operation mode is not the same as the expected operation mode.

The TestCases block contains several test inputs for sldvSliceCruiseControl.
3

In the TestCases Signal Builder click the Run all button  to run all of the
included test cases. You receive an error during the ResumeWO test case.

16-65



16 Model Slicer

The Assertion block halted simulation at 27 seconds, because the actual operation
mode was not the same as the expected operation mode. Click OK to close this error
message.

4 In the sldvSliceCruiseControlHarness model, double-click the Assertion block, clear
Enable assertion, and click OK.

Caution: If you do not clear Enable assertion, you encounter an error when you
slice the model.

5
Click run  to run the simulation again.

The Scope block in the model contains three signals:

• operation_mode – displays the actual operation mode of the subsystem.
• expected_mode – displays the expected operation mode of the subsystem that

the test case provides.
• verify – displays a Boolean value comparing the operation mode and the

expected mode.

16-66



 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

The scope shows a disparity between the expected operation mode and the actual
operation mode beginning at time 27. Now that you know the outport displaying the
unexpected behavior and the time window containing the unexpected behavior, use
Model Slicer to isolate and analyze the unexpected behavior.

16-67



16 Model Slicer

6 Create a Model Slicer configuration object for the model using slslicer.

obj = slslicer('sldvSliceCruiseControlHarness')

The Command Window displays the slice properties for this Model Slicer
configuration.

7 Activate the slice highlighting mode of Model Slicer to compile the model and
prepare it for dependency analysis.

activate(obj)

8 Add the operation_mode outport block as a starting point and highlight it.

addStartingPoint(obj,'sldvSliceCruiseControlHarness/operation_mode')

highlight(obj)

The area of the model upstream of the starting point and active during simulation is
highlighted.

16-68



 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

9 Simulate the model within a restricted simulation time window (maximum 30
seconds) to highlight only the area of the model upstream of the starting point and
active during the time window of interest.

simulate(obj,0,30)

Only the portion of the model upstream of the starting point and active during the
simulation time window is highlighted.

10 Create a sliced model sldvSliceCruiseControlHarness_sliced containing only
the area of interest.

slicedModel = slice(obj,'sldvSliceCruiseControlHarness_sliced')

16-69



16 Model Slicer

The sliced model sldvSliceCruiseControlHarness_sliced now contains a
simplified version of the source model sldvSliceCruiseControlHarness. The
simplified standalone model contains only those parts of the model that are upstream of
the specified starting point and active during the time window of interest.

Investigate the Sliced Model and Debug the Source Model

You can now debug the unexpected behavior in the simplified standalone model and then
apply changes to the source model.

16-70



 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

1 To enable editing the model again, terminate the Model Slicer mode.

terminate(obj)

2 Navigate to the area of the sliced model that contains the unexpected behavior.

open_system('sldvSliceCruiseControlHarness_sliced

/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled')

The AND Logical Operator block in this subsystem has a truncated true constant
attached to its second input port. Thistrue constant indicates that the second input
port is always true during the restricted time window for this sliced model, causing
the cruise control system not to enter the “has canceled” state.

3 Navigate to the equivalent AND Logical Operator block in the source system by using
slslicertrace to view the blocks connected to the second input port.

h = slslicertrace('SOURCE', 'sldvSliceCruiseControlHarness_sliced

16-71



16 Model Slicer

/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOp1')

hilite_system(h)

The OR Logical Operator block in this subsystem is always true in the current
configuration. Changing the OR Logical Operator block to an AND Logical Operator
block rectifies this error.

4 Before making edits, create new copies of the cruise control model and the test
harness model.

save_system('sldvSliceCruiseControl','sldvSliceCruiseControl_fixed')

save_system('sldvSliceCruiseControlHarness',

'sldvSliceCruiseControlHarness_fixed')

5 Update the model reference in the test harness to refer to the newly saved model.

set_param('sldvSliceCruiseControlHarness_fixed/Model',
16-72



 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

'ModelNameDialog','sldvSliceCruiseControl_fixed.slx')

6 Use the block path of the erroneous Logical Operator block to fix the error.

set_param('sldvSliceCruiseControl_fixed/CruiseControlMode/opMode

/resumeCondition/hasCanceled/LogicOp2','LogicOp','AND')

7 Simulate the test harness with the fixed model to confirm the corrected behavior.

sim('sldvSliceCruiseControlHarness_fixed')

16-73



16 Model Slicer

The scope now shows that the expected operation mode is the same as the actual
operation mode.

16-74



 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

See Also
slslicer | slsliceroptions | slslicertrace

More About
• “Highlight Functional Dependencies” on page 16-2

16-75



16 Model Slicer

Simplification of Variant Systems

In this section...

“Use the Variant Reducer to Simplify Variant Systems” on page 16-76
“Use Model Slicer to Simplify Variant Systems” on page 16-76

If your model contains “Variant Systems” (Simulink), you can reduce the model to a
simplified, standalone model containing only selected variant configurations.

Use the Variant Reducer to Simplify Variant Systems

After you Add and Validate Variant Configurations (Simulink), you can reduce the model
from the Variant Manager:

1 Open a model containing at least one valid variant configuration.
2 Select View >> Variant Manager, or right-click a variant system and select

Variant >> Open in Variant Manager.
3 Click Reduce model....
4 Select one or more variant configurations.
5 Set the Output directory.
6 Click Reduce to create a simplified, standalone model containing only the selected

variant configurations.

The Variant Reducer creates a simplified, standalone model in the output directory you
specified containing only the variant configurations you selected.

Use Model Slicer to Simplify Variant Systems

After you Add and Validate Variant Configurations (Simulink), you can use Model Slicer
to create a simplified, standalone model containing only the active variant configuration.
When you “Highlight Functional Dependencies” on page 16-2 in a model containing
variant systems, only active variant choices are highlighted. When you “Create a
Simplified Standalone Model” on page 16-21 from a model highlight that includes variant
systems, Model Slicer removes the variant systems and replaces them with the active
variant configurations.

For instructions on how to change the active variant configuration and how to set default
variant choices, see “Working with Variant Choices” (Simulink).

16-76



 Simplification of Variant Systems

More About
• “Create a Simple Variant Model” (Simulink)
• “Define, Configure, and Activate Variants” (Simulink)
• “Introduction to Variant Controls” (Simulink)

16-77





17

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 17-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 17-6
• “Perform Functional Testing and Analyze Test Coverage” on page 17-9
• “Analyze Code and Test Software-in-the-Loop” on page 17-13
• “Module Verification and Testing Processor-in-the-Loop” on page 17-22
• “Test a Model in Real Time” on page 17-23



17 Verification and Validation

Test Model Against Requirements and Report Results

Requirements Overview

Requirements are the basis for your system architecture, algorithm, and test plan.
Traceability between requirements documents, model, code, and tests helps you
document relationships, manage design changes, and interpret test results. Required
model properties and test objectives enable targeted design analysis and test case
generation for specific scenarios. You can evaluate your design and identify incomplete
or missing requirements with ad-hoc testing, using simulated user interfaces for your
model. Also, you can use rapid prototyping to validate requirements, and connect to
physical or simulated environments to test your algorithm. Update the design, adding
requirements and requirements links as necessary.

Test a Cruise Control Safety Requirement

This example shows a requirements-based testing workflow for a cruise control model.
You start with a model that has traceability to an external requirements document.
You add a test to evaluate two safety requirements, checking that the cruise control
disengages when the system reaches certain conditions. You add traceability to this test,
run the test, and report the results.

1 Create a copy of the project in a working folder. Enter

slVerificationCruiseStart

17-2



 Test Model Against Requirements and Report Results

2 Open the model and the test harness. On the command line, enter

open_system simulinkCruiseAddReqExample

sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Open the Test Sequence block.

• The BrakeTest sequence tests that the system disengages when the brake pedal
is pressed. It includes a verify statement

verify(engaged == false,...

    'verify:brake',...

    'system must disengage when brake applied')

• The LimitTest sequence tests that the system disengages when the speed
exceeds a limit. It includes a verify statement

verify(engaged == false,...

    'verify:limit',...

    'system must disengage when limit exceeded')

4 Open the requirements document. In the Simulink Project window, expand the
documents folder and open simulinkCruiseChartReqs.docx.

5 Add links between the test steps and the requirements document.

1 In the requirements document, highlight item 3.1, “Vehicle braking will
transition system to disengaged (inactive) when engaged (active)”

2 With item 3.1 highlighted, in the test sequence, right-click the BrakeTest step.
Select Requirements traceability > Link to Selection in Word.

3 In the requirements document, highlight item 3.4, “Transition to disengaged
(inactive) when vehicle speed is outside the limits of 20 mph to 90 mph”

4 With item 3.4 highlighted, in the test sequence, right-click the LimitTest step.
Select Requirements traceability > Link to Selection in Word.

5 Save the requirements document and the model.
6 Create a test case in the Test Manager, and link the test case to the requirements

section.

1 Open the Test Manager. In the Simulink menu, select Analysis > Test
Manager.

2 In the Test Manager toolstrip, click New > Test File. Select the tests folder in
the project, and enter a name for the test file. Click Save.

A new baseline test is created.

17-3



17 Verification and Validation

3 Under System Under Test, in the Model field, click the button  to use the
current model. The field displays the model name.

4 Expand the Test Harness section. From the drop-down menu, select the test
harness name.

5 In the requirements document, highlight section 3.1.
6 In the test case, expand the Requirements section. Click the arrow next to the

Add button and select Link to Selection in Word.
7 Use the same process to link the test case to section 3.4 in the requirements

document.
7 Highlight the test case. In the Test Manager toolstrip, click Run.
8 When the test finishes, expand the Verify Statements results. The results

show that both assessments pass, and the plot shows the detailed results of each
statement.

9 Create a report using a custom Microsoft Word template.

1 In the Test Manager, right-click the test case name. Select Results: > Create
Report.

2 In the Create Test Result Report dialog box, set the options:

• Title: SafetyTest
• Results for: All Tests

17-4



 Test Model Against Requirements and Report Results

• File Format: DOCX
• For the other options, keep the default selections.

3 For the Template File, select the ReportTemplate.dotx file in the
documents project folder.

4 Enter a file name and select a location for the report.
5 Click Create.

10 Review the report.

1 In the Test Case Requirements section, click the link to trace to the
requirements document.

2 The Verify Result section contains details of the two assessments in the test,
and links to the simulation output.

Related Examples
• “Link to Requirements Modeled in Simulink” (Simulink Verification and Validation)
• “Link Tests to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” (Simulink Verification and Validation)
• “Create Requirements Traceability Report for Model” (Simulink Verification and

Validation)

17-5



17 Verification and Validation

Analyze a Model for Standards Compliance and Design Errors

Standards and Analysis Overview

During model development, check and analyze your model to increase confidence in
its quality. Check your model against standards such as MAAB style guidelines and
high-integrity system design guidelines such as DO-178 and ISO 26262. Analyze your
model for errors, dead logic, and conditions that violate required properties. Using the
analysis results, update your model and document exceptions. Report the results using
customizable templates.

Check Model for Style Guideline Violations and Design Errors

This example shows how to use the Model Advisor to check a cruise control model for
MathWorks® Automotive Advisory Board (MAAB) style guideline violations and design
errors. Select checks and run the analysis on the model. Iteratively debug issues using
the Model Advisor and rerun checks to verify that it is in compliance. After passing your
selected checks, report results.

Check Model for MAAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAAB modeling
guidelines.

17-6



 Analyze a Model for Standards Compliance and Design Errors

1 Create a copy of the project in a working folder. On the command line, enter

slVerificationCruiseStart

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample

3 In the model window, select Analysis > Model Advisor > Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the

System Hierarchy.
5 Check your model for MAAB style guideline violations using Simulink Verification

and Validation.

a In the left pane, in the By Product > Simulink Verification and Validation
> Modeling Standards > MathWorks Automotive Advisory Board Checks
folder, select:

• Check for indexing in blocks
• Check for prohibited blocks in discrete controllers
• Check model diagnostic parameters

b Right-click the MathWorks Automotive Advisory Board Checks node, and
then select Run Selected Checks.

c Click Check model diagnostic parameters to review the configuration
parameter settings that violate MAAB style guidelines.

d In the right pane, click the parameter links to update the values in the
Configuration Parameters dialog box.

e To verify that your model passes, rerun the check. Repeat steps c and d, if
necessary, to reach compliance.

f To generate a results report of the Simulink Verification and Validation checks,
select the MathWorks Automotive Advisory Board Checks node, and then,
in the right pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using
Simulink Design Verifier.

1 In the left pane, in the By Product > Simulink Design Verifier folder, select
Design Error Detection.

17-7



17 Verification and Validation

2 In the right pane, click Run Selected Checks.
3 After the analysis is complete, expand the Design Error Detection folder, then

select checks to review warnings or errors.
4 In the right pane, click Simulink Design Verifier Results Summary. The dialog

box provides tools to help you diagnose errors and warnings in your model.

a Review the results on the model. Click Highlight analysis results on model.
Click the Compute target speed subsystem, outlined in red. The Simulink
Design Verifier Results Inspector window provides derived ranges that can help
you understand the source of an error by identifying the possible signal values.

b Review the harness model. The Simulink Design Verifier Results Inspector
window displays information that an overflow error occurred. To see the test
cases that demonstrate the errors, click View test case.

c Review the analysis report. In the Simulink Design Verifier Results Inspector
window, click Back to summary. To see a detailed analysis report, click HTML
or PDF.

Related Examples
• “Check for Compliance in Model and Subsystems” (Simulink Verification and

Validation)
• “Collect Model Metrics Using the Model Advisor” (Simulink Verification and

Validation)
• “Run a Design Error Detection Analysis” on page 6-5
• “Prove Properties in a Model” on page 12-5

17-8



 Perform Functional Testing and Analyze Test Coverage

Perform Functional Testing and Analyze Test Coverage

Functional Testing and Coverage Analysis Overview

Functional testing starts with building test cases based on requirements. These tests
can cover key aspects of your design and verify that individual model components meet
requirements. Test cases include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests
systematically. To check for regression, add baseline criteria to the test cases and test
the model regularly. Coverage measurement reflects the extent to which these tests
have fully exercised the model. Coverage measurement also helps you to add tests and
requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case Generation

This example shows a functional testing-based testing workflow for a cruise control
model. You start with a model that has tests linked to an external requirements
document, analyze the model for coverage in Simulink Verification and Validation,
incrementally increase coverage with Simulink Design Verifier, and report the results.

17-9



17 Verification and Validation

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

slVerificationCruiseStart

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample

sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results”
(Simulink Test). At the command line, enter:

open slReqTests.mldatx

4 Open the test sequence block. The sequence tests:

• That the system disengages when the brake pedal is pressed
• That the system disengages when the speed exceeds a limit

Some test sequence steps are linked to a requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the test manager, enable coverage collection for the test case.

a Open the test manager. In the Simulink menu, click Analysis > Test Manager.
b In the Test Browser, click the slReqTests test file.
c Expand Coverage Settings.
d Under COVERAGE TO COLLECT, select Record coverage for referenced

models.
e Under COVERAGE METRICS, select Decision, Condition, and MCDC.

17-10



 Perform Functional Testing and Analyze Test Coverage

2 Run the test. On the test manager toolstrip, click Run.
3 When the test finishes, in the Test Manager, navigate to the test case. The

aggregated coverage results show that the example model achieves 50% decision
coverage, 41% condition coverage, and 25% MCDC coverage.

17-11



17 Verification and Validation

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model
coverage. Select the test case in the Results and Artifacts and open the aggregated
coverage results section.

2 Select the test results from the previous section and then click Add Tests for
Missing Coverage.

The Add Tests for Missing Coverage options open.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier.
5 Run the updated test suite. On the test manager toolstrip, click Run. The test

results include coverage for the combined test case inputs, achieving increased model
coverage.

Related Examples
• “Link Tests to Requirements” (Simulink Test)
• “Assess Simulation Using Logical Statements” (Simulink Test)
• “Test Model Output Against a Baseline” (Simulink Test)
• “Highlight Functional Dependencies” on page 16-2
• “Generate Test Cases for Model Decision Coverage” on page 7-5
• (Simulink Test)

17-12



 Analyze Code and Test Software-in-the-Loop

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview

Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check
for run-time errors with static code analysis and run test cases that evaluate the code
against requirements and evaluate code coverage. Based on the results, refine the code
and add tests. For generated code, demonstrate that code execution produces equivalent
results to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Analyze Code for Defects, Metrics, and MISRA C:2012

This workflow describes how to check if your model produces MISRA® C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and model advisors. To check whether the code is MISRA compliant, you
use the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the Simulink project:

17-13



17 Verification and Validation

slVerificationCruiseStart

2 From the Simulink project, open the model
simulinkCruiseErrorAndStandardsExample.

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating
code.

1 Right-click Compute target speed and select C/C++ > Code Generation Advisor.
2 Select the Code Generation Advisor folder. Add the Polyspace objective. The MISRA

C:2012 guidelines objective is already selected.

17-14



 Analyze Code and Test Software-in-the-Loop

3 Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this mode, the check for incompatible blocks passes, but there
are some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

4 Click on check that was not passed. Accept the parameter changes by selecting
Modify Parameters.

5 Rerun the check by selecting Run This Check.

For your own model, you might not want to use all the recommended configuration
settings. Using nonrecommended settings can generate less MISRA compliant code.

17-15



17 Verification and Validation

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
more compliant with MISRA C and more compatible with Polyspace. This example shows
you how to use the Model Advisor to check your model further before generating code.

For more checking before generating code, you can also run the Modeling Guidelines for
MISRA C:2012.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Guidelines for MISRA C:2012

advisor checks.

3 Click Run Selected Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until

the MISRA modeling guidelines pass.

17-16



 Analyze Code and Test Software-in-the-Loop

For your own model, you might not want to use all the recommendations. Using
nonrecommended settings or blocks can generate less MISRA compliant code.

Generate and Analyze Code

After you have done the model compliance checking, you can now generate code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ > Build
This Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, right-click Compute target speed and select Polyspace

> Options.

17-17



17 Verification and Validation

4 Click the Configure (Polyspace Bug Finder) button. This option allows you to choose
more advanced Polyspace analysis options in the Polyspace configuration window.

5 On the same pane, select Calculate Code Metrics (Polyspace Bug Finder). This
option turns on code metric calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify

Code Generated For > Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and
defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

17-18



 Analyze Code and Test Software-in-the-Loop

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment
shows you the results of the static code analysis. There are 50 MISRA C:2012 coding rule
violations in your generated code.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOnOff. You can
annotate your code or your model to justify every result. But, because this model is
a unit in a larger program, you can also change the configuration of the analysis to
check only a subset of MISRA rules.

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from (Polyspace Bug Finder) option to Project configuration.

This option allow you to choose a subset of MISRA rules in the Polyspace
configuration.

17-19



17 Verification and Validation

4 Click the Configure button.
5 In the Polyspace Configuration window, on the Coding Rules & Code Metrics

pane, select the check box Check MISRA C:2012 (Polyspace Bug Finder) and from
the drop-down list, select single-unit-rules. Now, Polyspace checks only the
MISRA C:2012 rules that are applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

When the Polyspace environment reopens, there are no MISRA results, only code
metric results. The rules Polyspace showed previously were found because the model
was analyzed by itself. When you limited the rules Polyspace checked to the single-
unit subset, no violations were found.

17-20



 Analyze Code and Test Software-in-the-Loop

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report (Polyspace Bug Finder).

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

Related Examples
• “Generate and Analyze Code” (Polyspace Bug Finder)
• (Simulink Test)
• “Export Test Results and Generate Reports” (Simulink Test)

17-21



17 Verification and Validation

Module Verification and Testing Processor-in-the-Loop

Module Verification and Testing Processor-in-the-Loop Overview

Module verification involves testing and analyzing code at a system level, integrating
generated code from your model, handwritten code, and legacy code. Module verification
often includes generating code that executes on a target object, rather than the desktop
environment. Analyze the code to resolve errors and evaluate key metrics. Test the
integrated system using new requirements-based tests and system-level tests from your
model. Collect coverage on these tests and add tests to meet coverage targets.

Related Examples
• (Simulink Test)
• “Generate and Analyze Code” (Polyspace Bug Finder)

17-22



 Test a Model in Real Time

Test a Model in Real Time

Real-Time Testing and Testing Production Models Overview

Real-time testing assesses the system while including the effects of timers, physical
signals, and target hardware. Sweep through parameter values on the target,
verify system operation during execution, and verify expected results in the desktop
environment. Systems that have been verified on target hardware often exist in a
change-controlled state. You can test these systems without modifying them by using
isolated simulation and analysis environments.

Related Examples
• “Create and Run Real-Time Application from Simulink Model” (Simulink Real-

Time)
• “Test Models in Real Time” (Simulink Test)
• “Assess Simulation Using Logical Statements” (Simulink Test)

17-23





Glossary

abstraction The process of ignoring certain aspects of model behavior
that do not affect the test objective or property under
investigation.

analysis model The target model for a Simulink Design Verifier analysis.
If you select an atomic subsystem for analysis, the
analysis model is generated by extracting the subsystem
to a new model.

assumption A property that is assumed to be true during a property
proof. The proof result holds only when the assumption is
true.

block replacement rule A rule that is registered with Simulink Design Verifier
and defines how instances of specific blocks are replaced
by an alternate implementation. The software uses
MATLAB commands to define when and how to apply
a block replacement rule (see “Define Custom Block
Replacements” on page 4-9).

component verification The process of verifying an individual components in a
model. You can verify a component within the execution
context of the model, or independently of its parent model.

condition coverage Measures the percentage of the total number of logic
conditions associated with logical model objects that
the simulation actually exercised. Enabling condition
coverage causes every decision and condition coverage
outcome to be enabled. See “Types of Model Coverage”
(Simulink Verification and Validation).

constraint A property that is forced to be true during test case
generation.

counterexample A test case that demonstrates a property violation.

coverage objective A test objective that defines when a coverage point results
in a particular outcome.

coverage point A decision, condition, or MCDC expression associated
with a model object. Each coverage point has a fixed
number of mutually exclusive outcomes.

Glossary-1



Glossary

decision coverage Measures the percentage of the total number of
simulation paths through model objects that the
simulation actually traversed. Decision coverage is
a subset of modified decision/condition coverage. See
“Types of Model Coverage” (Simulink Verification and
Validation).

floating-point approximation The process of approximating floating-point numbers
using rational numbers (i.e., fractions whose numerator
and denominator are small integers). The Simulink
Design Verifier software performs floating-point
approximations during its analysis. It can generate
invalid test cases that result from numerical differences.
For example, given a large enough floating-point number
x, the expression x==(x+1) can be true; however, this
expression never holds if x is a rational number.

invalid test case A test case that does not satisfy its objectives.

modified condition/decision
coverage (MCDC)

Measures the independence of logical block inputs
and transition conditions associated with logical
model objects during the simulation. When you set the
coverage objective to MCDC, Simulink Design Verifier
automatically enables every coverage objective for
decision coverage and condition coverage as well.

Note that MCDC test cases are not generated for XOR
configured logic operators. You can achieve MCDC by
using the same tests that would be generated from AND
configured blocks or OR configured blocks.

See “Types of Model Coverage” (Simulink Verification and
Validation).

nonlinear arithmetic A computation in the model that cannot be expressed as
a combination of mutually exclusive linear expressions.
Nonlinear arithmetic can affect a property or test
objective, and it can cause the analysis to return an error.
In this case, you should apply simplifying approximations
and abstractions.

Glossary-2



 Glossary

property A logical expression of the signals and data values,
within a model, that is intended to be proven true during
simulation. Properties evaluate at specific points in the
model.

property violation The condition during a simulation when a property is
false.

test case A sequence of numeric values and input data time that
you input to a model during its simulation.

test harness A model that runs test cases on an analysis model.

test objective A logical expression of the signals and data values, within
a model, that is intended to be true at least once in the
resulting test case during simulation. Test objectives
evaluate at specific points in the model.

Test Objective block The block that you add to a model to define test objectives.
In the block mask, define test objectives as values or
ranges that an input signal must satisfy during a test
case.

unsatisfiable test objective The status of a test objective that indicates a test case
cannot be generated for the specified approximations.
This includes floating-point approximations and
maximum-step limitations specified in the Design
Verifier > Test Generation pane of the Configuration
Parameters dialog box.

validated property The status of a property that indicates no counterexample
exists, subject to floating-point approximations and the
settings specified in the Property Proving pane of the
Configuration Parameters dialog box.

Glossary-3




